Ultrasound pinpoints compressed air leaks

For more than 30 years, ultrasound technology has been the preferred diagnostic technology of maintenance departments throughout the world.

05/01/2009


For more than 30 years, ultrasound technology has been the preferred diagnostic technology of maintenance departments throughout the world due to its simplicity and reliability as well as its ability to save plants hundreds of thousands of dollars in production and energy waste.

In this time, hundreds of case studies have documented how ultrasonic detectors pinpoint leaks in steam traps and valves, detect bearing wear, and identify arcing, tracking and corona in electrical equipment. Virtually every industry has profited from early detection of potential serious problems while reducing their energy consumption and carbon footprint along the way.

The effectiveness of ultrasonic

Most leakage problems produce a broad range of sound. The high-frequency ultrasonic components of these sounds are extremely short wave signals that tend to be fairly directional. Therefore it is easy to isolate these signals from background plant noises and to detect their exact location.

Airborne ultrasound instruments, often referred to as “ultrasonic translators,” provide information in two ways: qualitatively through the ability to “hear” ultrasounds through a noise-isolating headphone and quantitatively via incremental readings, such as decibels on a meter.

Although the ability to gauge intensity and view sonic patterns is important, it is equally essential to be able to “hear” the ultrasounds produced by various equipment. That is precisely what makes these instruments so popular. They allow inspectors to confirm a diagnosis on the spot by being able to clearly discriminate among various equipment sounds.

When routinely inspecting compressed air and steam trap systems, ultrasound technology is among the most effective and efficient ways to ensure detection of leaks, helping increase production and reduce energy waste %%MDASSML%% controlling your carbon footprint.

Easy-to-use instruments

Today’s airborne ultrasound translators are portable and relatively easy to use. They generally consist of a handheld unit with headphones, a meter or display panel, a sensitivity/volume adjustment, and (most often) interchangeable modules used in either a scanning or contact mode. Some instruments have the ability to adjust the frequency response from between 20 kHz to 100 kHz. An ultrasonic transmitter, called a tone generator, is often included.

Many of these features are useful in helping a user adapt to a specific test situation. As an example, should a low-level leak occur in a water valve, the frequency tuning can be adjusted to help a user tune into and hear the trickle of the water leak.

Digital instruments are supported by software that is used to report leak survey results. Some software calculates the survey savings as well as related carbon footprint gas reduction for reporting purposes. For leak management purposes the reports generated by the software provides information on leaks found and, more importantly, leaks repaired.

Leak detection

According to the U.S Department of Energy, compressed air is the most costly utility in plants today. When a manufacturer’s utility bills run into the millions of dollars annually, management is wise to keep a close eye on wasted energy. This is why many facility managers now have a compressed air program with

Ultrasonics as their key weapon to fight air leaks.

Here are some recommended steps to use in a compressed air survey:

  1. Walk through the test area. While walking, pay attention to obvious problems such as loud leaks that can be spotted and tagged without the aid of an ultrasonic detector. Observe misuse of air such as valves left wide open, rags placed over pipes to reduce the noise level of large leaks, unattended machines left on with air blowing all over the place.

  2. As you walk, try to determine the best route for inspection.

  3. For consistency, start at the compressor/supply side and work your way to the use side.

  4. When you begin your inspection, create a series of inspection “zones”. This will help organize your approach and prevent the possibility of overlooking a section and missing some leaks.

  5. Tag all leaks. The tag will make it easy to spot the leaks for repair.

  6. Test all leaks after they have been repaired. Sometimes leaks can be fixed and new ones created inadvertently.

  7. Calculate your savings using cfm charts, air leak formulas and software.

  8. Report your results.

    1. The use of ultrasound technology helps detect minute leads in compressed air and other systems.


      <table ID = 'id814909-0-table' CELLSPACING = '0' CELLPADDING = '2' WIDTH = '100%' BORDER = '0'><tbody ID = 'id814082-0-tbody'><tr ID = 'id814084-0-tr'><td ID = 'id814086-0-td' CLASS = 'table' STYLE = 'background-color: #EEEEEE'> Author Information </td></tr><tr ID = 'id814096-3-tr'><td ID = 'id814098-3-td' CLASS = 'table'> Alan Bandes is vice president of U.E. Systems, Inc. He can be contacted at abandes@att.net or by visiting www.uesystems.com . </td></tr></tbody></table>


No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Hannover Messe 2016: Taking hold of the future - Partner Country status spotlights U.S. manufacturing; Honoring manufacturing excellence: The 2015 Product of the Year Winners
Inside IIoT: How technology, strategy can improve your operation; Dry media or web scrubber?; Six steps to design a PM program
World-class manufacturing: A recipe for success: Finding the right mix for a salad dressing line; 2015 Salary Survey: Manufacturing slump dims enthusiasm
Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Digital oilfields: Integrated HMI/SCADA systems enable smarter data acquisition; Real-world impact of simulation; Electric actuator technology prospers in production fields
Special report: U.S. natural gas; LNG transport technologies evolve to meet market demand; Understanding new methane regulations; Predictive maintenance for gas pipeline compressors
Warehouse winter comfort: The HTHV solution; Cooling with natural gas; Plastics industry booming
Managing automation upgrades, retrofits; Making technical, business sense; Ensuring network cyber security
Designing generator systems; Using online commissioning tools; Selective coordination best practices

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role that compressed air plays in manufacturing plants.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
click me