Ultrasound pinpoints compressed air leaks

For more than 30 years, ultrasound technology has been the preferred diagnostic technology of maintenance departments throughout the world.

05/01/2009


For more than 30 years, ultrasound technology has been the preferred diagnostic technology of maintenance departments throughout the world due to its simplicity and reliability as well as its ability to save plants hundreds of thousands of dollars in production and energy waste.

In this time, hundreds of case studies have documented how ultrasonic detectors pinpoint leaks in steam traps and valves, detect bearing wear, and identify arcing, tracking and corona in electrical equipment. Virtually every industry has profited from early detection of potential serious problems while reducing their energy consumption and carbon footprint along the way.

The effectiveness of ultrasonic

Most leakage problems produce a broad range of sound. The high-frequency ultrasonic components of these sounds are extremely short wave signals that tend to be fairly directional. Therefore it is easy to isolate these signals from background plant noises and to detect their exact location.

Airborne ultrasound instruments, often referred to as “ultrasonic translators,” provide information in two ways: qualitatively through the ability to “hear” ultrasounds through a noise-isolating headphone and quantitatively via incremental readings, such as decibels on a meter.

Although the ability to gauge intensity and view sonic patterns is important, it is equally essential to be able to “hear” the ultrasounds produced by various equipment. That is precisely what makes these instruments so popular. They allow inspectors to confirm a diagnosis on the spot by being able to clearly discriminate among various equipment sounds.

When routinely inspecting compressed air and steam trap systems, ultrasound technology is among the most effective and efficient ways to ensure detection of leaks, helping increase production and reduce energy waste %%MDASSML%% controlling your carbon footprint.

Easy-to-use instruments

Today’s airborne ultrasound translators are portable and relatively easy to use. They generally consist of a handheld unit with headphones, a meter or display panel, a sensitivity/volume adjustment, and (most often) interchangeable modules used in either a scanning or contact mode. Some instruments have the ability to adjust the frequency response from between 20 kHz to 100 kHz. An ultrasonic transmitter, called a tone generator, is often included.

Many of these features are useful in helping a user adapt to a specific test situation. As an example, should a low-level leak occur in a water valve, the frequency tuning can be adjusted to help a user tune into and hear the trickle of the water leak.

Digital instruments are supported by software that is used to report leak survey results. Some software calculates the survey savings as well as related carbon footprint gas reduction for reporting purposes. For leak management purposes the reports generated by the software provides information on leaks found and, more importantly, leaks repaired.

Leak detection

According to the U.S Department of Energy, compressed air is the most costly utility in plants today. When a manufacturer’s utility bills run into the millions of dollars annually, management is wise to keep a close eye on wasted energy. This is why many facility managers now have a compressed air program with

Ultrasonics as their key weapon to fight air leaks.

Here are some recommended steps to use in a compressed air survey:

  1. Walk through the test area. While walking, pay attention to obvious problems such as loud leaks that can be spotted and tagged without the aid of an ultrasonic detector. Observe misuse of air such as valves left wide open, rags placed over pipes to reduce the noise level of large leaks, unattended machines left on with air blowing all over the place.

  2. As you walk, try to determine the best route for inspection.

  3. For consistency, start at the compressor/supply side and work your way to the use side.

  4. When you begin your inspection, create a series of inspection “zones”. This will help organize your approach and prevent the possibility of overlooking a section and missing some leaks.

  5. Tag all leaks. The tag will make it easy to spot the leaks for repair.

  6. Test all leaks after they have been repaired. Sometimes leaks can be fixed and new ones created inadvertently.

  7. Calculate your savings using cfm charts, air leak formulas and software.

  8. Report your results.

    1. The use of ultrasound technology helps detect minute leads in compressed air and other systems.


      <table ID = 'id814909-0-table' CELLSPACING = '0' CELLPADDING = '2' WIDTH = '100%' BORDER = '0'><tbody ID = 'id814082-0-tbody'><tr ID = 'id814084-0-tr'><td ID = 'id814086-0-td' CLASS = 'table' STYLE = 'background-color: #EEEEEE'> Author Information </td></tr><tr ID = 'id814096-3-tr'><td ID = 'id814098-3-td' CLASS = 'table'> Alan Bandes is vice president of U.E. Systems, Inc. He can be contacted at abandes@att.net or by visiting www.uesystems.com . </td></tr></tbody></table>


No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.