Ultracapacitor-battery hybrid energy storage

Back to Basics: Cost, power, performance advantages for hybridized energy storage using batteries and ultracapacitors.

02/23/2011


Ioxus Gen1h UltracapacitorsEnergy storage and power management options are many for engineers, across multiple industries and applications. Batteries offer simplicity along with low cycle life, temperature sensitivities, and inefficiencies. Careful analyses of cost, power, and performance of combined battery/ultracapacitor solutions make a compelling case for hybridized energy storage.

Common questions

Manufacturers evaluating hybrid battery/ultracapacitor energy storage often ask:

  • Will it cost more?
  • Will dual-storage systems be overly complex?
  • What additional electronics will be required to balance two technologies in one component?
  • What is the timeline for developing a hybrid solution?

Hybrid benefits

When traditional batteries are paired with ultracapacitors optimized for higher voltage levels:

Ultracapacitors are more attractive than batteries. Price of these components has fallen 99% in the past decade, while battery costs have fallen 30%-40% in the same time period. That trend will likely continue as the price of raw materials falls and the market continues its widespread adoption of ultracapacitors.

While batteries alone are a simpler system, in application they fail to measure up in almost every way to a hybrid component.

In most applications, a primary energy source handles a continuous energy demand. At times, there are peak power demands, and engineers can either size batteries to handle peak demands or use ultracapacitors to bridge the demand. Using ultracapacitors also allows downsizing of the primary energy source.

High-power ultracapacitors provide burst power required by high current demands associated with acceleration, starting, steering, and regeneration. Pairing a capacitor with a battery improves the power density of the hybrid supply, which has the added advantage of allowing the battery to operate without seeing the large current spikes that would be present in the absence of the capacitor.

Extend battery life

A hybridized approach allows a battery to perform better and for longer periods of time when paired with an ultracapacitor. An ultracapacitor enables the battery to do what it was designed to do: provide high-energy density.

For example, an accelerating hybrid vehicle creates an enormous demand for amps (current). Putting ultracapacitors in parallel with batteries and control electronics allows ultracapacitors to provide high current, enabling the battery to become strictly an energy source, rather than an energy and power source.

Since ultracapacitors have a much lower internal resistance and much faster charge rate than batteries, they make battery-powered systems run more efficiently. Ultracapacitors make batteries last longer because they do the brunt of the work when the load is initially switched on and allow the battery to pick up load gradually, preventing high current draws from the battery. Avoiding high current drain on batteries avoids thermal, chemical, and mechanical stresses. Current spike (and internal temperature) reductions extend battery life as much as 400%, depending on the application.

A typical starter battery will degrade quickly if it is required to supply high current for any length of time. So-called deep cycle batteries are designed specifically to supply higher currents, but even such batteries, with thicker lead plates, are not immune from damage due to repeated deep cycling. A parallel configuration of a battery with an ultracapacitor can dramatically reduce the deep cycling of the battery under heavy load conditions. Doing so extends the life of the hybrid power supply and provides a more efficient supply. Hybrid design also can decrease the warranty and replacement cost of the batteries, making the system economically attractive.

Cycles and Celsius

Ultracapacitors also perform under a wider range of climate conditions than a battery, with a comfortable range of 70 ºC to -40 ºC. Batteries claim a range of 60 degC to -20 degC, but at and below zero, batteries lose most of their available energy.

Ultracapacitors also deliver greater return in cycle life. Batteries rely on a chemical reaction to dissipate stored energy and have life of hundreds to low thousands of cycles. Ultracapacitors store energy in an electrostatic field, allowing life of more than a million cycles.

Higher efficiencies

Ultracapacitors offer 95%-98% efficiencies, and lead-acid batteries top out at 70%. Combined ultracapacitors and battery energy storage systems can reduce the size, weight, and number of batteries in a system. Hybridizations are more efficient and use fewer materials. They can also extend the cycle life of the battery component, which makes the whole system “greener.”

While a dual-technology system is not as simple to deal with as a hybrid one, the payoffs are too significant to ignore. In a hybrid energy storage system, both elements work together to help the other, resulting in a more efficient system with a longer, better performing lifespan.


Brendan Andrews is vice president of sales and marketing at Ioxus Inc. and also responsible for education.


At a glance

  • Ultracapacitors offer 95%-98% efficiencies, and lead-acid batteries top out at 70%.
  • In the last 10 years ultracapacitor prices have fallen 99%; batteries prices have fallen 30%-40%.
  • In a hybrid energy storage system, reductions in battery current spikes (and internal temperature) extend battery life as much as 400%, depending on the application.

 



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Hannover Messe 2016: Taking hold of the future - Partner Country status spotlights U.S. manufacturing; Honoring manufacturing excellence: The 2015 Product of the Year Winners
Inside IIoT: How technology, strategy can improve your operation; Dry media or web scrubber?; Six steps to design a PM program
World-class manufacturing: A recipe for success: Finding the right mix for a salad dressing line; 2015 Salary Survey: Manufacturing slump dims enthusiasm
Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Digital oilfields: Integrated HMI/SCADA systems enable smarter data acquisition; Real-world impact of simulation; Electric actuator technology prospers in production fields
Special report: U.S. natural gas; LNG transport technologies evolve to meet market demand; Understanding new methane regulations; Predictive maintenance for gas pipeline compressors
Warehouse winter comfort: The HTHV solution; Cooling with natural gas; Plastics industry booming
Managing automation upgrades, retrofits; Making technical, business sense; Ensuring network cyber security
Designing generator systems; Using online commissioning tools; Selective coordination best practices

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role that compressed air plays in manufacturing plants.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
click me