Tutorial: Capacitive humidity sensors

Sophisticated manufacturing increases availability of complex designs.

05/22/2008


Airborne moisture content can affect critical aspects of production or product quality in many manufacturing processes. Measuring humidity can be tricky, but capacitive sensors have a high degree of precision and reliability.

Humidity is a broad term and needs to be specified. In most situations it means relative humidity (RH) and the reading is a percentage. So 50% RH means the air in the sample is holding 50% of the maximum amount of water vapor possible at this temperature. If the sample of air is warmed, the RH reading will go down, even though the amount of water vapor has not changed. Absolute humidity is the amount of vapor in a given volume of air, so it is usually specified as grams per cubic meter and not tied to a temperature. Dew point is the temperature at which the air becomes saturated and water vapor begins to condense, and is indicated in degrees Fahrenheit or Celsius.

Traditionally, humidity was measured by using wet bulb/dry bulb thermometers, the stretching of silk or hair, or chilled mirrors to find the dew point. Such technologies still exist, but have largely been supplanted by more precise and less complicated techniques, including capacitive, resistive and thermal conductivity. In recent years, capacitive sensors have emerged as offering an excellent combination of precision, reliability, stability, and cost for measuring RH. This is largely due to major advances in manufacturing using techniques developed for sophisticated semiconductors.

Capacitive sensors measure RH by observing changes in capacitance between conductive electrodes. The dielectric constant of the sensor changes with humidity level in a way that can be measured. When an ambient temperature is also available, the other types of humidity readings can be calculated.

When evaluating a simple sensor or integrated humidity device, consider these points where manufacturers or models will differ. These are generalities, so check with your suppliers for specifics:

Precision—Capacitive sensors can usually read with
Humidity range—Since RH is a percentage, it can be no lower than 0% and no higher than 100%. Some sensors can cover that completely, while others may lose a point or two at the extremes.
Temperature range—High temperatures of 180-200 °C are typical, with low ranges down to -40 °C.
Dew point—Units can usually cover ranges from -40-100 °C.
Hysteresis—Units that see wide swings should be capable of returning within 1-2%.

Your process requirements will dictate how sophisticated a unit you and its related cost. There are other operational issues that you should examine at the same time:

Durability and stability—Any unit can perform well in clean air, but smoke, chemical vapors, and other contaminants can degrade performance. Wide temperature or humidity swings can also have lasting effects. Designs vary in their ability to tolerate specific conditions, so this is worth exploring with your supplier.
Parallel temperature measurement—Some devices also include a temperature measurement, which can be very handy if you need it.
Sensor replacement or calibration—Most designs allow the sensor element itself to be removed for cleaning, calibration, or replacement. Some are easier than others.
Corresponding temperature measurement—While the humidity sensor may be very precise, if it is coupled with a less precise temperature device, calculations of dew point, absolute humidity, or logging values will be no better than the lower grade instrument.

Humidity sensors are available from a variety of suppliers. Configurations include naked sensors, handheld, wall mounted, and remote sensors.

Suppliers include:
E+E Elektronik
GE Sensing
Honeywell
Moore Industries
Rotronic
Testo
Vaisala

You can also search online at the Control Engineering Supplier Search .

—Peter Welander, process industries editor, PWelander@cfemedia.com ,
Process Instrumentation & Sensors Monthly
Register here and scroll down to select your choice of free eNewsletters.





No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Leaders Under 40 program features outstanding young people who are making a difference in manufacturing. View the 2013 Leaders here.
The new control room: It's got all the bells and whistles - and alarms, too; Remote maintenance; Specifying VFDs
2014 forecast issue: To serve and to manufacture - Veterans will bring skill and discipline to the plant floor if we can find a way to get them there.
2013 Top Plant: Lincoln Electric Company, Cleveland, Ohio
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Bring focus to PLC programming: 5 things to avoid in putting your system together; Managing the DCS upgrade; PLM upgrade: a step-by-step approach
Balancing the bagging triangle; PID tuning improves process efficiency; Standardizing control room HMIs
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.