Tutorial: Capacitive humidity sensors

Sophisticated manufacturing increases availability of complex designs.

05/22/2008


Airborne moisture content can affect critical aspects of production or product quality in many manufacturing processes. Measuring humidity can be tricky, but capacitive sensors have a high degree of precision and reliability.

Humidity is a broad term and needs to be specified. In most situations it means relative humidity (RH) and the reading is a percentage. So 50% RH means the air in the sample is holding 50% of the maximum amount of water vapor possible at this temperature. If the sample of air is warmed, the RH reading will go down, even though the amount of water vapor has not changed. Absolute humidity is the amount of vapor in a given volume of air, so it is usually specified as grams per cubic meter and not tied to a temperature. Dew point is the temperature at which the air becomes saturated and water vapor begins to condense, and is indicated in degrees Fahrenheit or Celsius.

Traditionally, humidity was measured by using wet bulb/dry bulb thermometers, the stretching of silk or hair, or chilled mirrors to find the dew point. Such technologies still exist, but have largely been supplanted by more precise and less complicated techniques, including capacitive, resistive and thermal conductivity. In recent years, capacitive sensors have emerged as offering an excellent combination of precision, reliability, stability, and cost for measuring RH. This is largely due to major advances in manufacturing using techniques developed for sophisticated semiconductors.

Capacitive sensors measure RH by observing changes in capacitance between conductive electrodes. The dielectric constant of the sensor changes with humidity level in a way that can be measured. When an ambient temperature is also available, the other types of humidity readings can be calculated.

When evaluating a simple sensor or integrated humidity device, consider these points where manufacturers or models will differ. These are generalities, so check with your suppliers for specifics:

Precision—Capacitive sensors can usually read with
Humidity range—Since RH is a percentage, it can be no lower than 0% and no higher than 100%. Some sensors can cover that completely, while others may lose a point or two at the extremes.
Temperature range—High temperatures of 180-200 °C are typical, with low ranges down to -40 °C.
Dew point—Units can usually cover ranges from -40-100 °C.
Hysteresis—Units that see wide swings should be capable of returning within 1-2%.

Your process requirements will dictate how sophisticated a unit you and its related cost. There are other operational issues that you should examine at the same time:

Durability and stability—Any unit can perform well in clean air, but smoke, chemical vapors, and other contaminants can degrade performance. Wide temperature or humidity swings can also have lasting effects. Designs vary in their ability to tolerate specific conditions, so this is worth exploring with your supplier.
Parallel temperature measurement—Some devices also include a temperature measurement, which can be very handy if you need it.
Sensor replacement or calibration—Most designs allow the sensor element itself to be removed for cleaning, calibration, or replacement. Some are easier than others.
Corresponding temperature measurement—While the humidity sensor may be very precise, if it is coupled with a less precise temperature device, calculations of dew point, absolute humidity, or logging values will be no better than the lower grade instrument.

Humidity sensors are available from a variety of suppliers. Configurations include naked sensors, handheld, wall mounted, and remote sensors.

Suppliers include:
E+E Elektronik
GE Sensing
Honeywell
Moore Industries
Rotronic
Testo
Vaisala

You can also search online at the Control Engineering Supplier Search .

—Peter Welander, process industries editor, PWelander@cfemedia.com ,
Process Instrumentation & Sensors Monthly
Register here and scroll down to select your choice of free eNewsletters.





No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Your leaks start here: Take a disciplined approach with your hydraulic system; U.S. presence at Hannover Messe a rousing success
Hannover Messe 2016: Taking hold of the future - Partner Country status spotlights U.S. manufacturing; Honoring manufacturing excellence: The 2015 Product of the Year Winners
Inside IIoT: How technology, strategy can improve your operation; Dry media or web scrubber?; Six steps to design a PM program
Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Digital oilfields: Integrated HMI/SCADA systems enable smarter data acquisition; Real-world impact of simulation; Electric actuator technology prospers in production fields
Special report: U.S. natural gas; LNG transport technologies evolve to meet market demand; Understanding new methane regulations; Predictive maintenance for gas pipeline compressors
Warehouse winter comfort: The HTHV solution; Cooling with natural gas; Plastics industry booming
Managing automation upgrades, retrofits; Making technical, business sense; Ensuring network cyber security
Designing generator systems; Using online commissioning tools; Selective coordination best practices

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role that compressed air plays in manufacturing plants.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me