Trends and positioning for fire protection engineers

Not since the late 1980s have we seen a business climate as challenging as the current one. Here are the characteristics of the fire protection engineers who have been able to remain successful and employed during the downturns.

12/16/2009


    View the full story, including all images and figures, in our monthly digital edition Dec. 2009 shovel

    What are these characteristics, and how does one develop them? The key characteristics from my perspective include:

     

    • Strong technical knowledge in a broad range of areas

    • Strong communication and organizational skills

    • The ability to work in a team

    • The ability to be decisive

    • Self-motivation and willingness to go the extra mile

    • A commitment to continual learning

    • A strong network

    • Obtaining and maintaining engineering licensure.

    One could say that these characteristics are key to the success of any professional, so let me put them in context to fire protection engineering. First, let's take a look at what's going on in the industry.

     

    Codes and standards

    Codes and standards affecting building design continue to increase in complexity. Even though the International Code Council (ICC) has published a performance code, jurisdictions have not adopted it. Its use has been accepted, but typically only on an ad hoc basis or through equivalency. In addition, NFPA has performance design criteria in most of its codes and standards. Due to the complexity and cost of preparation of a performance-based design, the codes are rarely applied to an entire project. Prescriptive requirements continue to increase, often without technical justification or loss history. An understanding of alternative means and methods allowed by the codes will become increasingly more necessary to achieve design goals.

     

    Fire/life safety systems

    Fire protection systems include not only suppression, detection, and alarm, but also smoke control and other fire safety systems. Technologies in suppression and detection continue to develop and the use of systems for other purposes, like mass notification systems, continues to increase. Smoke control systems and their application, such as for elevator pressurization systems, continue to expand, and we are continually learning about them. The tools for optimizing design of these systems continue to evolve.

     

    Sustainable design

    There is growing pressure to implement sustainable solutions in building design, and fire protection engineers will play an increasing role in the implementation of these solutions. Fire resistance of structures, combustibility of contents, and interior finishes are just a few areas where fire protection overlaps sustainability. Using a performance approach can help avoid conflicts in these areas.

     

    Fire protection engineering demand

    The market for fire protection engineering will continue to expand domestically and abroad. While the profession and use of fire protection services have expanded, they still remain a best-kept secret. I regularly come across people involved in design and construction who have never heard of the profession. There is a tremendous opportunity to expand the overall market to the profession's benefit.

     

    When the economy begins to expand again, developers, owners, and designers will demand more creative solutions to the burdensome prescriptive requirements that have been incorporated in the code during our current period of limited construction.

     

    To be effective in the marketplace, fire protection engineers need to work harder to understand the intent behind the code versus its rote application. The more complex the code, the more difficult it can be to apply to a broad range of situations.

     

    Authorities having jurisdiction will also need assistance in evaluating designs that have been based on performance criteria.

     

    New horizons

    A few areas of practice are gaining momentum and present significant opportunities for fire protection engineers.

     

    Commissioning of systems is one of these areas. While system commissioning has been performed on various levels, the development of NFPA 3, “Standard for the Commissioning and Integrated Testing of Fire Protection and Life Safety Systems,” will emphasize comprehensive commissioning of not just individual fire protection systems, but also the coordinated performance of all building systems that form the fire protection program for a building. The first edition of the standard is on schedule to be completed in fall of 2010. Engineers doing commissioning will need to have knowledge of not only fire protection systems, but also HVAC, other building systems, and system integration technologies.

     

    The other area that is expanding is mass notification. Currently, mass notification systems primarily have been installed in Dept. of Defense (DoD) facilities and on university campuses. The systems in DoD facilities follow Uniform Facilities Codes. Those on university campuses have been implemented in an ad hoc manner. The 2010 edition of NFPA 72 has incorporated more detailed criteria for design and performance of mass notification systems.

     

    I anticipate that more facilities will be incorporating mass notification systems as an integral part of their emergency plans. This will drive a need for practitioners that can perform risk analysis and design of integrated systems.

     

    Positioning for success

    Given where we think the market is heading, what can we do to stay current and develop our skills across a broad spectrum? There are number of resources and opportunities available to fire protection engineers. Membership in organizations such as the Society of Fire Protection Engineers (SFPE), NFPA, and ICC provide access to a broad range of current information applicable to fire protection engineering.

     

    Depending on your interests, membership in trade organizations like the Automatic Fire Alarm Assn ., American Fire Sprinkler Assn ., and National Fire Sprinkler Assn. can also prove to be very beneficial. All of these organizations also provide training to facilitate knowledge transfer.

     

    Membership and participation in organizations help build credentials and, more importantly, a network of professional contacts. There are opportunities to participate at a local, national, and even international level. If you haven't been active, I would recommend starting at the local level and expanding from there. Active participation in these organizations provides opportunities to not only enhance your technical knowledge and network, but to develop your leadership and management skills. These associations are always looking for members to take on leadership roles that can provide added exposure and experience.

     

    My active participation in SFPE and NFPA at the local and international level has provided me with many opportunities that I would have not otherwise had.

     

    Development of organizational and communication skills is also very important. While the organizations noted above don't provide courses on this subject, there are resources in these areas. I know individuals who have benefited from training classes through organizations like Dale Carnegie and PSMJ Resources, Inc .

     

    As individuals, we are responsible for putting forth the extra effort to develop our personal and professional skills. As employers, we should strive to create an environment that fosters continual learning and teamwork. We need to help younger members of our profession develop the skills to be successful. Career development planning and goal setting combined with formal or informal mentoring are key elements to accomplishing these goals.

     

    Author Information

    Grill is a principal with Arup, where he focuses on fire protection engineering. He is a member of Consulting-Specifying Engineer's editorial advisory board and a past president of the Society of Fire Protection Engineers.

     



    No comments
    The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
    The Product of the Year program recognizes products newly released in the manufacturing industries.
    The Leaders Under 40 program features outstanding young people who are making a difference in manufacturing. View the 2013 Leaders here.
    The new control room: It's got all the bells and whistles - and alarms, too; Remote maintenance; Specifying VFDs
    2014 forecast issue: To serve and to manufacture - Veterans will bring skill and discipline to the plant floor if we can find a way to get them there.
    2013 Top Plant: Lincoln Electric Company, Cleveland, Ohio
    Case Study Database

    Case Study Database

    Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

    These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

    Click here to visit the Case Study Database and upload your case study.

    Bring focus to PLC programming: 5 things to avoid in putting your system together; Managing the DCS upgrade; PLM upgrade: a step-by-step approach
    Balancing the bagging triangle; PID tuning improves process efficiency; Standardizing control room HMIs
    Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software

    Annual Salary Survey

    Participate in the 2013 Salary Survey

    In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

    Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

    2012 Salary Survey Analysis

    2012 Salary Survey Results

    Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
    The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
    The Society for Maintenance and Reliability Professionals an organization devoted...
    Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
    IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
    Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
    The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.