Tips and Tricks: 6 overlooked places to use industrial wireless

How Wi-Fi industrial wireless communications can save time, trouble, and money: Flexible work cells, mobile connections, and network enabling legacy devices are three overlooked areas to apply industrial wireless technologies. Three more are...


Technological advances like multiple-in-multiple-out (MIMO) transmitting and receiving are making Wi-Fi increasingly useful in industrial applications. Bandwidth and reliability have increased dramatically, and implementation costs have dropped. It’s worth rethinking some of the ways in which industrial data communications have been made in the past and considering where Wi-Fi can fit into the mix. Here are six overlooked locations to consider industrial wireless communications.

1. Flexible work cells

Industrial assembly was traditionally done by breaking down a process into individual steps and positioning machinery to maximize the efficiency and throughput of each machine. But that model lacked the flexibility needed for the production of small and customized lot sizes. The solution is the work cell, where the machinery and devices required for a specific project can be temporarily grouped together, and released for other uses as dictated by circumstances. But that means recabling the work cells every time there’s a change. Wi-Fi makes it easier, and cheaper, to set up and rearrange work cells.

2. Mobile connections

Mobile connections: In a shipping and receiving application, a Wi-Fi access point enables mobile equipment to stay connected to the network, even as it moves around a plant.

Cable connections don’t allow for much mobility. In applications like shipping and receiving, where the value of mobile machinery like forklifts is greatly enhanced if those devices have network connections, an industrial-grade Wi-Fi wireless access point (such as the APXG-Q5420 from B&B Electronics) can keep mobile equipment connected to the network even as it moves around a plant. A truck could connect to a forklift to download or upload delivery manifests and shipment details. Inventory systems, printers, scales, and other tools can communicate directly with a vehicle to expedite workflow. Wi-Fi clients like laptops, tablets, or smartphones can connect directly to the vehicle. Even vehicle maintenance is simplified, as onboard diagnostics and telematics can be monitored directly or from a remote location.

3. Network-enabling legacy devices

The enormous installed base of devices using serial communications isn’t going anywhere any time soon. But as newer protocols like Ethernet and Wi-Fi have appeared, it is becoming harder to find laptops or computers equipped with serial ports.

Network-enabling legacy devices: APXG is B&B’s Wi-Fi wireless access point (AP) (which also serves as a router or network bridge). The B&B APMG is the embeddable version of the Wi-Fi AP.

One solution is to equip serial devices with wireless Ethernet serial servers. Wireless serial server technology can turn a serial device into one more node on the network and give it communications capabilities that it was never designed to possess. A serial device could also be equipped with an embedded Wi-Fi access point module (like the APMG-Q551 from B&B Electronics), which creates a self-sustaining wireless hotspot much like the one at the corner coffee shop. Handheld Wi-Fi clients can then connect to it using Android, Apple iOS, or Microsoft Windows operating systems.

4. Cable vulnerability

Although network cables are commonly run under floors, or through walls or drop ceilings, some portion of the cable must eventually be exposed as it makes the final run to an attached device. That’s not a big issue in an office environment, but in industrial applications that final run leaves a cable vulnerable to serious damage. Cables may be crushed by moving machinery, stepped on, pulled, bent, or soaked in damaging fluids like solvents. And when cables fail, installing new cable is often cheaper and easier than tracking down the fault point in the existing installation. If this happens often enough it will ultimately create a confusing rat’s nest of old and new wiring.

The problem is magnified in temporary installations at remote locations. Imagine setting up a large generator system for a remote construction site, or to provide temporary power after a natural disaster. You’d need to tie together everything from supervisory control and data acquisition (SCADA) to Modbus network communications, and you’d be working in a slightly disorganized environment full of moving vehicles and workers. Murphy’s Law tells us what would happen to any exposed cable. Trenching your cable would help, but it would add time and expense to the project. And the final run would still be highly vulnerable. It would be easier to do the job with Wi-Fi.

5. Hard-to-wire locations

Hard-to-wire locations: An off-the-shelf Wi-Fi bridge creates a reliable network connection across a river to a remote pump station, where running cable would be prohibitively expensive.

Sometimes you just can’t wire a widget. The expenses involved in running cable over a river or highway, for example, can be prohibitive. Even an indoor installation can be problematic, depending on where a device needs to be placed.

And moving data any significant distance over cable will call for expensive fiber optic cables, receivers, and transceivers. Fiber optic cable provides for enormous bandwidth and, as demonstrated by the telcos, it will carry data across entire continents. But how many applications would actually require that much range or bandwidth? For far less money you can install off-the-shelf Wi-Fi bridges (such as the Ghostbridge from B&B Electronics), which can create connections with speeds of up to 150 Mbps at distances of up to 15 km, depending upon local conditions.

6. Hazardous locations

In 1989 a solar flare created a magnetic storm that knocked out the power grid for all of Quebec, Canada, by inducing unexpected current on the power lines. Industrial motors and other high-power devices create magnetic fields that will affect nearby copper cabling in much the same way, though on a smaller scale. With luck, the only result will be data transmission errors and blue screens. But more serious events will damage expensive equipment.

And the greater the distance between connected devices, the more likely it becomes that communicating devices will be getting their power from different building ground references. When they do, copper cable can create a ground loop path. Again, you’ll be able to count yourself lucky if the only result is a blue screen.

These problems can’t be addressed with ordinary surge suppression, which only tries to limit spikes between the signal and ground line. (When the ground line rises, as it does in ground loop situations, surge suppression won’t stop it.) You could install isolators, which allow the lines to float while keeping the local side at the proper ground and signal level. And you could invest in fiber optics, which are natively immune to electromagnetic interference (EMI), spikes surges, and ground loops.

But if you’d prefer to save yourself some money and trouble, you could just use Wi-Fi.

- Mike Fahrion is data communications expert and the director of product management for B&B Electronics; Edited by Mark T. Hoske, content manager CFE Media, Control Engineering, Plant Engineering, and Consulting-Specifying Engineer. He can be reached at

About the author

Mike Fahrion, the director of product management at B&B Electronics, is an expert in data communications with 20 years of design and application experience. He oversees development of the company’s rugged M2M connectivity solutions for wireless and wired networks based on serial, Ethernet, wireless, and USB communication technologies. Fahrion is a speaker and author who writes a self-described politically incorrect newsletter, “eConnections,” with more than 50,000 monthly subscribers.

The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Doubling down on digital manufacturing; Data driving predictive maintenance; Electric motors and generators; Rewarding operational improvement
2017 Lubrication Guide; Software tools; Microgrids and energy strategies; Use robots effectively
Prescriptive maintenance; Hannover Messe 2017 recap; Reduce welding errors
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Research team developing Tesla coil designs; Implementing wireless process sensing
Commissioning electrical systems; Designing emergency and standby generator systems; Paralleling switchgear generator systems
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me