Timing is everything

Engineers must consider arc flash prevention in the electrical systems. How important is timing?

03/28/2013


Because an arc flash relay depends on an existing circuit breaker to interrupt the current, does it make a difference in overall reaction time? And if the relay must wait until an arc forms, will the relay take longer to trip than the circuit breaker would trip on its own? Finally, how does the reaction time of an arc flash relay compare to an overcurrent protection relay? 

Circuit breakers must react somewhat slowly to low-level faults; otherwise, they would nuisance trip. Arc flash relays avoid nuisance tripping by sensing light. Light is present even at the early stages of an arc flash. 

The current drawn by an arc flash event will vary depending on circumstances; a tool across two live phases will have very low resistance and may draw as much current as a bolted short, while a momentary ground fault can have much higher resistance and may draw only 1/3 the current of a bolted short. If the arcing fault current is less than the instantaneous trip level of a circuit breaker or overcurrent protection relay, then it falls into the short-time trip on the overload curve. In contrast, an arc flash relay detects the light from an emerging arc flash and sends a trip signal to the existing circuit breaker in approximately 1 ms. 

After receiving a trip signal from an arc flash relay, a typical circuit breaker used in switchgear or a motor control center may take about 50 ms to open, depending on make and model. This is the breaker’s mechanical clearing time and is the same or slightly less than the time it takes for it to react to a high-value fault. But many arcs begin as fairly low value faults that draw less than the breaker’s instantaneous trip current, and only reach that level after several milliseconds. An arc flash relay will detect an arc as soon as it begins and trigger the breaker directly, reducing the time to clear the fault to the arc flash relay’s 1-ms response time plus the breaker’s mechanical clearing time. Because arc flash incident energy grows exponentially with time, those saved milliseconds can make the difference between damage that is hardly noticeable and a catastrophe.

A similar comparison can be made with an overcurrent protection relay. Compared to the 1 ms reaction time of an arc flash relay, a typical overcurrent protection relay can take between 25 and 45 ms to detect a fault and send a signal to the circuit breaker. A digital or numeric overcurrent protection relay requires time for sampling the signal, conversion to digital, calculation and operation of an output, while an analog unit (still found in many older installations) may take many ms, depending on make, model, and the type of fault. And either type, even when set to its shortest possible time, will still take several milliseconds to respond.

Do arc flash relays really work? What’s your opinion? Join the conversation below. 


Justin Mahaffey is sales engineer for Littelfuse, where he helps customers improve uptime and worker electrical safety. His experience includes heavy industrial applications such as oil and gas drilling and electric power utilities. Early in his career, Mahaffey worked as both a test and product engineer.



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
2016 Product of the Year; Diagnose bearing failures; Asset performance management; Testing dust collector performance measures
Safety for 18 years, warehouse maintenance tips, Ethernet and the IIoT, GAMS 2016 recap
2016 Engineering Leaders Under 40; Future vision: Where is manufacturing headed?; Electrical distribution, redefined
SCADA at the junction, Managing risk through maintenance, Moving at the speed of data
Safety at every angle, Big Data's impact on operations, bridging the skills gap
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Applying network redundancy; Overcoming loop tuning challenges; PID control and networks
Driving motor efficiency; Preventing arc flash in mission critical facilities; Integrating alternative power and existing electrical systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role of plant safety and offers advice on best practices.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me