Time-proportional control: more from an on/off switch

Time-proportional control, a form of pulse-width modulation, is a mathematical technique that allows a feedback controller to use an on/off or discrete actuator as if it were a continuous actuator capable of generating control efforts anywhere between 0% and 100%. The trick is to turn the actuator on and off for periods proportional to the desired control effort.

05/27/2009


Time-proportional control , a form of pulse-width modulation , is a mathematical technique that allows a feedback controller to use an on/off or discrete actuator as if it were a continuous actuator capable of generating control efforts anywhere between 0% and 100%. The trick is to turn the actuator on and off for periods proportional to the desired control effort.

Consider a home cooling system, for example. Most thermostats use a “bang-bang” control algorithm that compares the actual room temperature with the setpoint specified by the room’s occupants, then turns the air conditioner fully on or fully off if the temperature is more than a few degrees too high or too low. This technique causes the room temperature to fluctuate around the setpoint, but in most homes, that’s good enough.

By cycling a discrete actuator on and off, a time-proportional controller can emulate the effects of a continuous actuator. In teh top example, the controller is attempting to achieve a 50% control effort by keeping the actuator in the

By cycling a discrete actuator on and off, a time-proportional controller can emulate the effects of a continuous actuator. In teh top example, the controller is attempting to achieve a 50% control effort by keeping the actuator in the "on" position 50% of the time.

The thermostat could achieve tighter control with a continuous actuator such as a motorized damper that would continuously allow a measured amount of chilled air into the room. Those are common in commercial HVAC applications but are typically too expensive for home use.

But with time-proportional control, a home thermostat wouldn’t need a continuous actuator to emulate its effects. It could use the air conditioner’s on/off switch to regulate not the amount of cool air being dumped into the room but the duration of each blast. To achieve an X% control effort, the thermostat would simply turn the air conditioner on for X units of time then off for 100 minus X units of time.

If those units are small compared to the time it takes to cool the room (a few minutes or so), then the average effect of turning the air conditioner fully on for X% of the time will be identical to running the air conditioner at X% of full capacity continuously. In the short term, the room temperature would still fluctuate around the setpoint, but typically not as much as with bang-bang control.

Other applications of time-proportional control might require minimizing those fluctuations, in which case the minimum time between “on” and “off” commands — the controller’s duty cycle — would have to be reduced. Unfortunately, that would also increase the wear and tear on the actuator by increasing the frequency with which it switches states.

A 50% control effort would be the worst case since the actuator would have to switch states at the end of every duty cycle. In the home cooling example, a duty cycle less than several minutes long would quickly wear out the air conditioner’s motor starter.

At the other extreme, a duty cycle on the order of hours would help extend the life of the motor starter, but the air conditioner would end up running for hours on end, thereby amplifying the room temperature’s fluctuations to an uncomfortable degree.

Microsoft provides free clip art.
Time-proportional control works best on relatively slow processes and processes that provide a mechanism for smoothing out the effects of the actuator’s flip-flopping. In addition to temperature control, applications suitable for this technique include level and pressure control of large volumes and applications for which a continuous actuator would be prohibitively expensive.


Author Information

Vance VanDoren is consulting editor for Control Engineering . Reach him at controleng@msn.com .




No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
2015 Top Plant: Phoenix Contact, Middletown, Pa.; 2015 Best Practices: Automation, Electrical Safety, Electrical Systems, Pneumatics, Material Handling, Mechanical Systems
A cool solution: Collaboration, chemistry leads to foundry coat product development; See the 2015 Product of the Year Finalists
Raising the standard: What's new with NFPA 70E; A global view of manufacturing; Maintenance data; Fit bearings properly
Special report: U.S. natural gas; LNG transport technologies evolve to meet market demand; Understanding new methane regulations; Predictive maintenance for gas pipeline compressors
Cyber security cost-efficient for industrial control systems; Extracting full value from operational data; Managing cyber security risks
Drilling for Big Data: Managing the flow of information; Big data drilldown series: Challenge and opportunity; OT to IT: Creating a circle of improvement; Industry loses best workers, again
Migrating industrial networks; Tracking HMI advances; Making the right automation changes
Understanding transfer switch operation; Coordinating protective devices; Analyzing NEC 2014 changes; Cooling data centers
Upgrading secondary control systems; Keeping enclosures conditioned; Diagnostics increase equipment uptime; Mechatronics simplifies machine design

Annual Salary Survey

After almost a decade of uncertainty, the confidence of plant floor managers is soaring. Even with a number of challenges and while implementing new technologies, there is a renewed sense of optimism among plant managers about their business and their future.

The respondents to the 2014 Plant Engineering Salary Survey come from throughout the U.S. and serve a variety of industries, but they are uniform in their optimism about manufacturing. This year’s survey found 79% consider manufacturing a secure career. That’s up from 75% in 2013 and significantly higher than the 63% figure when Plant Engineering first started asking that question a decade ago.

Read more: 2014 Salary Survey: Confidence rises amid the challenges

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role that compressed air plays in manufacturing plants.