Thermal modeling protects motors without overtripping

04/01/2009


Today’s modern microprocessor-based protection relays offer much more than the standard motor protection provided by electromechanical relays. Advanced features include motor-heating, time-to-trip and countdown-to-restart calculations %%MDASSML%% plus real-time diagnostics.

Even with the calculating power of microprocessor-based protection, most relays today still attempt to provide motor protection just by measuring current. The various manufacturers’ models calculate motor heating by thermal capacity or thermal register, where 0% is completely cooled and 100% is the trip threshold.

This thermal capacity is accumulated based on the measured current such that during motor starting, protection is essentially a function of the current squared multiplied by time (an I2t element), with maximum starting time dictated by the hot motor safe-stall time.

Limits of accuracy

While this type of protection dates back to electromechanical relays, the I2t model does not result in the most accurate motor protection, and limits true available horsepower. Thermal time constants and changing motor resistance are critical to proper protection.

Without proper compensation for these motor attributes, the overcurrent model overestimates motor heat, which causes it to trip prematurely. This is especially evident in cyclic overload conditions and in slow-starting, high-inertia load applications.

Cyclic overloads cause a motor to run for some time over the rated load and then for another period at less than the rated load. If the total heat buildup during the overload condition is less than the heat dissipated during the underloaded condition, then the motor thermal capacity is not exceeded. A true thermal model will calculate the heating and cooling time constants and properly apply them to the cyclic overloading condition.

An overcurrent-based protection scheme will overtrip the motor because the model overestimates heat buildup. Adjusting the cooling rate does not solve the problem because it is only correct for one known overcurrent and cyclic period. True thermal-based protection accurately models motor heat and provides accurate, proper protection.

Loading problems

Problems with the I2t model also arise when starting motors with high-inertia loads, as the time required to start the motor may approach %%MDASSML%% or even exceed %%MDASSML%% the hot safe-stall time. Highly accurate thermal-based protection includes a model that calculates motor slip (speed) during the start.

The relay calculates slip based on measured current, voltage and known full-load slip and locked-rotor torque (rated torque) from the nameplate. The relay uses the calculated slip to compute the positive- and negative-sequence rotor resistance throughout the motor start.

Motor resistance changes during starting by a factor of three or more. Without compensating for the resistance reduction during starting, an I2t scheme will trip before true thermal limits are reached, thereby restricting available horsepower during the start. Relays using a thermal model with a slip-based algorithm can automatically calculate maximum safe start times for each unique start sequence. Calculation of rotor resistance allows the relay to accurately reflect motor heating during a start and results in longer allowable acceleration times before tripping.

Motor protection can be greatly enhanced today with microprocessor-based relays with true thermal models that account for dynamic motor attributes. Relays that calculate thermal time constants and apply a thermal-based protection scheme can properly protect a motor during cyclic overloads without overtripping.

The slip-dependent thermal model protects the motor and allows for long acceleration times better than traditional I2t elements and electromechanical relays. Accurate calculation and tracking of motor heat by modern relays are valuable tools for improving motor protection and providing wider operating margins.

True thermal modeling provides motor protection even under cyclic loading from equipment such as this blower for an aerated holding tank at the Moscow, ID wastewater treatment plant.

Accurate thermal modeling provides protection that maximizes motor availability while providing excellent protection from damage.


Author Information

Mark Zeller is director of corporate marketing at




No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Leaders Under 40 program features outstanding young people who are making a difference in manufacturing. View the 2013 Leaders here.
The new control room: It's got all the bells and whistles - and alarms, too; Remote maintenance; Specifying VFDs
2014 forecast issue: To serve and to manufacture - Veterans will bring skill and discipline to the plant floor if we can find a way to get them there.
2013 Top Plant: Lincoln Electric Company, Cleveland, Ohio
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Bring focus to PLC programming: 5 things to avoid in putting your system together; Managing the DCS upgrade; PLM upgrade: a step-by-step approach
Balancing the bagging triangle; PID tuning improves process efficiency; Standardizing control room HMIs
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.