The Industrial Internet of Things

05/15/2013


The technology solutions we create must be easy, flexible, and powerful

Rick Bullotta

Any consideration of applying the concepts from the IoT to the industrial space would be incomplete without addressing the following:

  • Legacy systems and devices—How will they participate in this new architecture, at all levels of the stack? While IPv6 and 6LoWPAN are important moving forward, we need to embrace existing devices and endpoints as well.
  • The IoT and I2oT are not a communications/plumbing problem (or opportunity); they are about creation of useful applications. While standardizing some of the lower level networking is helpful, it will fall far short of truly unlocking the potential and represents only a tiny piece of the requirements. Other critical elements include:

1. A semantic model for discovering, addressing, and consuming the data, services, and events that the elements of the IoT/I2oT will provide. Although the “I” in the IoT stands for Internet, the reality is that the Internet wasn’t necessarily the source of the amazing innovations we’ve seen that have changed our lives. It was in many cases the WWW and related standards and protocols that ran on top of the Internet. The same will be true of the IoT.

2. Highly granular security models that can protect access to very specific device capabilities. This way, we can allow selective sharing and access control, better deal with cyber security implications, and so on.

3. Quality of service (QoS) and security at the network layer. Not all messages and bits that are passed on the IoT and I2oT are of equal importance, and this needs to be designed into the stack. IPV6 offers some capabilities in these areas, but more is required.

Let’s not forget the human side of the discussion. People still represent the sensors, actuators, and knowledge base for a huge amount of industrial processes. Failure to consider how humans will interact in the I2oT will lead to failure!

Despite some vendors’ claims to the contrary, the IoT and I2oT are not simply cloud device architectures. In fact, to be successful, secure, reliable, and capable of performing as required, we need to consider them as a distributed systems architecture. Those of us who come from the industrial automation world have been dealing with these types of problems for decades, and there is much to be learned from past experiences and applied to the IoT and the I2oT. Standards are important, but we need to consider carefully where in the stack to focus our energies first on standardization. For example:

  • Which areas have the most immediate impact/value?
  • How can we address the issue of legacy integration?
  • How can we “future proof” our standardization efforts so that when IPv24 and infinitely fast, zero gravity, powerless wireless communications are available, we aren’t starting from scratch?
  • Consider not only the use cases of the past, but the use cases of the future.

Moreover, how can we embrace some other key elements of the IoT in the I2oT?

  • Location awareness of assets, people, and even data. Data has time, value, quality, and location.
  • Contextualization of data via metatagging and other mechanisms, such as a move from dumb historians to smart historians,
  • Mobile devices and new modalities for interaction, including push-based notifications, search-based access to information, secure connections from anywhere, and so on, and,
  • Extend the concept of the social graph to the equipment, processes, systems, and people in the work environment.

We at ThingWorx are using our extensive experience in the industrial sector (the founders of ThingWorx brought experience from Wonderware, Lighthammer, and Cimnet) to apply those lessons and know-how to the IoT and the I2oT. We share the view that there is huge value to be unlocked. We also passionately believe that the value will be unlocked when we provide technology solutions that are easy, flexible, and powerful. Those elements need not be mutually exclusive. And security and reliability are a given. We also feel strongly that there is much to be gained from sharing experiences and technology in both directions—applying the lessons learned from the open, mobile collaborative, and composable world of the IoT to the industrial space, and leveraging decades of knowledge and experience in delivering reliable, performance driven, distributed systems that exist in the industrial sector.

Rick Bullotta is CTO and co-founder of ThingWorx. 



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.