The hunt for 60+% thermal efficiency

In this era of high concern for energy consumption, readily available energy-efficient motors top the 96% mark, electric drives reach 95%, and many appliances and consumer devices exhibit rising efficiency. What, then, makes 60% thermal efficiency so special? It’s a much different scenario for power generation.

08/01/2008


In this era of high concern for energy consumption, readily available energy-efficient motors top the 96% mark, electric drives reach 95%, and many appliances and consumer devices exhibit rising efficiency. What, then, makes 60% thermal efficiency so special?

It’s a much different scenario for power generation. Complex combustion and fluid-flow processes involved in power conversion limit thermal efficiency, despite application of the best engineering know-how. For example, a typical light-water reactor nuclear power plant offers thermal efficiency around 35%, while a modern coal-powered plant with super-critical boiler tops out at 44%.

However, one power technology, the gas turbine, has been pushing the efficiency envelope. These large, land-based (stationary) turbines—with 100s of megawatt (MW) output—draw on the advances in design, materials, and cooling techniques of their more numerous aircraft gas turbine cousins. The latest turbines offer thermal efficiencies in the 40% range, with a recent model reportedly obtaining 46%.

These values refer to simple-cycle operation, where turbine exhaust is not further used. Real advantage comes from gas turbine exhaust applied as input to a standard steam turbine in a combined-cycle power plant. This is where new-generation gas turbines can become the driving engine to obtain 60%+ overall thermal efficiency.

Europe leads the way

Among stationary gas turbine suppliers, developments from two manufacturers are particularly noteworthy. GE Energy installed the first of its H systems (combined-cycle gas and steam turbine) at Baglan Bay power station in South Wales (U.K.). The plant went commercial in 2003 and, to date, has logged over 30,000 operating hours. Currently it runs at 480 MW, with capability for higher output, according to GE Energy.

Five other GE H turbines are in various stages of implementation; three are in Japan at Tokyo Electric Power Co.’s (TEPCO’s) Futtsu thermal power station. The first of these 50-Hz machines was initially fired in Dec. 2007, and is expected to be in operation in late summer 2008. H systems in TEPCO Units 2 and 3 are scheduled to run by mid-2010.

GE’s first H-class turbine in the U.S., also its first 60-Hz machine, was installed in 2006 at Inland Empire Energy Center—a natural gas combined-cycle power plant in Riverside County, CA. Two GE H systems will comprise this plant, which is designed for maximum net rated electrical output of 775 MW to domestic and business users. Inland’s two units are scheduled to go online later this summer.

Meanwhile, Siemens Power Generation is moving its H-class SGT5-8000H turbine toward commercialization. Installed at the Irsching 4 gas power plant near Ingolstadt, Germany, the first firing of the turbine occurred in Dec. 2007. First synchronization to the grid followed in March 2008 and full-load testing (simple-cycle mode) started in April 2008, notes Phillip Ratliff, director of next-generation gas turbines at Siemens.

Siemens’ 50-Hz machine outputs 340 MW, but is designed to produce 530 MW in eventual combined-cycle operation—with expected efficiency of more than 60%. “A 60-Hz turbine is being developed after further verification of the first design,” says Ratliff.

An extensive test and validation program will continue for the SGT5-8000H turbine until mid-2009. Then, build-out of the combined-cycle plant begins in phase 2 of the program, with transfer to the plant operator, E.ON Kraftwerke GmbH, expected in mid-2011.

The next couple of years look exciting for the gas turbine power generation arena.



ONLINE extra

Also read: New, efficient industrial gas turbines coming . The story describes GE Energy and Siemens Power Generation technologies that weigh up to 440 metric tons.


Author Information

Frank J. Bartos, P.E., is a Control Engineering consulting editor. Reach him at braunbart@sbcglobal.net .




No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Hannover Messe 2016: Taking hold of the future - Partner Country status spotlights U.S. manufacturing; Honoring manufacturing excellence: The 2015 Product of the Year Winners
Inside IIoT: How technology, strategy can improve your operation; Dry media or web scrubber?; Six steps to design a PM program
World-class manufacturing: A recipe for success: Finding the right mix for a salad dressing line; 2015 Salary Survey: Manufacturing slump dims enthusiasm
Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Digital oilfields: Integrated HMI/SCADA systems enable smarter data acquisition; Real-world impact of simulation; Electric actuator technology prospers in production fields
Special report: U.S. natural gas; LNG transport technologies evolve to meet market demand; Understanding new methane regulations; Predictive maintenance for gas pipeline compressors
Warehouse winter comfort: The HTHV solution; Cooling with natural gas; Plastics industry booming
Managing automation upgrades, retrofits; Making technical, business sense; Ensuring network cyber security
Designing generator systems; Using online commissioning tools; Selective coordination best practices

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role that compressed air plays in manufacturing plants.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
click me