The hunt for 60+% thermal efficiency

In this era of high concern for energy consumption, readily available energy-efficient motors top the 96% mark, electric drives reach 95%, and many appliances and consumer devices exhibit rising efficiency. What, then, makes 60% thermal efficiency so special? It’s a much different scenario for power generation.


In this era of high concern for energy consumption, readily available energy-efficient motors top the 96% mark, electric drives reach 95%, and many appliances and consumer devices exhibit rising efficiency. What, then, makes 60% thermal efficiency so special?

It’s a much different scenario for power generation. Complex combustion and fluid-flow processes involved in power conversion limit thermal efficiency, despite application of the best engineering know-how. For example, a typical light-water reactor nuclear power plant offers thermal efficiency around 35%, while a modern coal-powered plant with super-critical boiler tops out at 44%.

However, one power technology, the gas turbine, has been pushing the efficiency envelope. These large, land-based (stationary) turbines—with 100s of megawatt (MW) output—draw on the advances in design, materials, and cooling techniques of their more numerous aircraft gas turbine cousins. The latest turbines offer thermal efficiencies in the 40% range, with a recent model reportedly obtaining 46%.

These values refer to simple-cycle operation, where turbine exhaust is not further used. Real advantage comes from gas turbine exhaust applied as input to a standard steam turbine in a combined-cycle power plant. This is where new-generation gas turbines can become the driving engine to obtain 60%+ overall thermal efficiency.

Europe leads the way

Among stationary gas turbine suppliers, developments from two manufacturers are particularly noteworthy. GE Energy installed the first of its H systems (combined-cycle gas and steam turbine) at Baglan Bay power station in South Wales (U.K.). The plant went commercial in 2003 and, to date, has logged over 30,000 operating hours. Currently it runs at 480 MW, with capability for higher output, according to GE Energy.

Five other GE H turbines are in various stages of implementation; three are in Japan at Tokyo Electric Power Co.’s (TEPCO’s) Futtsu thermal power station. The first of these 50-Hz machines was initially fired in Dec. 2007, and is expected to be in operation in late summer 2008. H systems in TEPCO Units 2 and 3 are scheduled to run by mid-2010.

GE’s first H-class turbine in the U.S., also its first 60-Hz machine, was installed in 2006 at Inland Empire Energy Center—a natural gas combined-cycle power plant in Riverside County, CA. Two GE H systems will comprise this plant, which is designed for maximum net rated electrical output of 775 MW to domestic and business users. Inland’s two units are scheduled to go online later this summer.

Meanwhile, Siemens Power Generation is moving its H-class SGT5-8000H turbine toward commercialization. Installed at the Irsching 4 gas power plant near Ingolstadt, Germany, the first firing of the turbine occurred in Dec. 2007. First synchronization to the grid followed in March 2008 and full-load testing (simple-cycle mode) started in April 2008, notes Phillip Ratliff, director of next-generation gas turbines at Siemens.

Siemens’ 50-Hz machine outputs 340 MW, but is designed to produce 530 MW in eventual combined-cycle operation—with expected efficiency of more than 60%. “A 60-Hz turbine is being developed after further verification of the first design,” says Ratliff.

An extensive test and validation program will continue for the SGT5-8000H turbine until mid-2009. Then, build-out of the combined-cycle plant begins in phase 2 of the program, with transfer to the plant operator, E.ON Kraftwerke GmbH, expected in mid-2011.

The next couple of years look exciting for the gas turbine power generation arena.

ONLINE extra

Also read: New, efficient industrial gas turbines coming . The story describes GE Energy and Siemens Power Generation technologies that weigh up to 440 metric tons.

Author Information

Frank J. Bartos, P.E., is a Control Engineering consulting editor. Reach him at .

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
A cool solution: Collaboration, chemistry leads to foundry coat product development; See the 2015 Product of the Year Finalists
Raising the standard: What's new with NFPA 70E; A global view of manufacturing; Maintenance data; Fit bearings properly
Sister act: Building on their father's legacy, a new generation moves Bales Metal Surface Solutions forward; Meet the 2015 Engineering Leaders Under 40
Cyber security cost-efficient for industrial control systems; Extracting full value from operational data; Managing cyber security risks
Drilling for Big Data: Managing the flow of information; Big data drilldown series: Challenge and opportunity; OT to IT: Creating a circle of improvement; Industry loses best workers, again
Pipeline vulnerabilities? Securing hydrocarbon transit; Predictive analytics hit the mainstream; Dirty pipelines decrease flow, production—pig your line; Ensuring pipeline physical and cyber security
Upgrading secondary control systems; Keeping enclosures conditioned; Diagnostics increase equipment uptime; Mechatronics simplifies machine design
Designing positive-energy buildings; Ensuring power quality; Complying with NFPA 110; Minimizing arc flash hazards
Building high availability into industrial computers; Of key metrics and myth busting; The truth about five common VFD myths

Annual Salary Survey

After almost a decade of uncertainty, the confidence of plant floor managers is soaring. Even with a number of challenges and while implementing new technologies, there is a renewed sense of optimism among plant managers about their business and their future.

The respondents to the 2014 Plant Engineering Salary Survey come from throughout the U.S. and serve a variety of industries, but they are uniform in their optimism about manufacturing. This year’s survey found 79% consider manufacturing a secure career. That’s up from 75% in 2013 and significantly higher than the 63% figure when Plant Engineering first started asking that question a decade ago.

Read more: 2014 Salary Survey: Confidence rises amid the challenges

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.