The costs and risks of damper-based controls in kitchen ventilation

Engineers must think in terms of total safety and optimal energy efficiency when designing kitchen ventilation systems of the future.

04/08/2014


A hood layout with dampers. Courtesy: Melink Corporation.There is only one practical application for installing modulating dampers in high-temperature grease ducts over kitchen hoods serving commercial cooking equipment: A high-rise building in an urban setting with a kitchen having multiple hoods totaling over 10,000 cfm that are located on a lower level where there is no other way to exhaust the effluent other than design a single chase and duct to a single fan located on a much higher level.

It is typically more cost-effective on a construction and operating basis, as well as less risk-prone from a liability standpoint, to minimize the length of high-temperature grease ducts. This is why, for example, most hotel, hospital, and other large commercial kitchens are designed as part of a single-floor building and only connected to a multi-story building. This design eliminates the first cost of installing a duct 2, 5, 10, or more floors, the waste of valuable space in a high-rise, and the risk of extending a potential fire hazard any further than necessary. And it facilitates a dedicated fan per hood design without the need for dampers—the benefits of which will be explained later in this article.  

But even in a high-rise building, purposely designing “obstructions” in a long, high-temperature grease duct that is otherwise designed to convey heat, smoke, and grease vapors out and away from the building is problematic for three reasons:

Liability concerns: The longer the high-temperature grease duct, the greater the probability of distributing grease into areas of the building beyond the kitchen. Because grease is a combustible substance, this poses a potential risk. This is why codes require regular cleaning of kitchen hood, ducts, and fans. High-rise buildings with long ducts and obstructions are inherently more exposed from a liability standpoint than are single-story buildings with short ducts and no obstructions.  

Energy penalties: Long ducts with multiple 90-deg turns and dampers add resistance to airflow and require the fan to operate at a higher speed than otherwise necessary to move a specified air quantity. Given that one purpose of these dampers is to purportedly save fan energy, it is a step in the wrong direction. In fact, if the cooking load is fairly steady and/or the controls are not highly reliable, the long ducts, additional 90-deg turns, and installed dampers will increase rather than decrease overall energy usage.

Maintenance issues: Modulating dampers are constantly cycling and have a limited number of cycles before they will eventually fail. Even a million-cycle rating could be limited to a couple years of operation depending on the variability of cooking operations and the effect of the heat, grease, and quarterly cleanings on their overall life. No architect or engineer wants to have a damper fail in a high-rise building that is serving hundreds of employees, patients, and/or visitors. Who will inspect, repair, and replace these relatively inaccessible devices before such an occurrence?

A hood layout without dampers. Courtesy: Melink Corporation.Therefore, engineers and consultants should give serious pause before designing modulating dampers into high-temperature grease ducts in high-rise buildings. Yes, the dampers might be allowed by code and approved by a listing organization, but that does not eliminate the three problems mentioned above—and their associated costs and risks.

Fire dampers are different than modulating dampers. Fire dampers are designed to be 100% open all the time unless there is a fire, in which case they go 100% closed. They are specifically designed for applications like high-rise buildings to contain any smoke and fire rather than allow them to spread to other floors. And they typically rely on simple gravity and a fusible link—which easily can be replaced on a regular schedule—to provide fail-safe performance. Some fire dampers may use an actuator, which is subject to mechanical maintenance in a way that gravity fire dampers are not, but it is far less prone to repair and maintenance issues than constantly moving modulating dampers.

Motorized back-draft dampers are also different than modulating dampers because they are either 100% opened or closed—and cycle only up to two times a day. They are specifically designed for applications in the north where extremely cold and dense outside air can “drop” through the duct and affect indoor temperatures, which in turn can increase the heating load. Fortunately, they only operate before cooking starts and after cooking ends, and do not require the use of air pressure sensors. And though this is a subsystem with moving parts, the relatively minimal cycling and simple open/close sequence makes them less prone to repair and maintenance issues. Plus, they can be installed in a more accessible and serviceable location such as a mezzanine or the outlet of the fan.  

Modulating dampers are constantly moving and can cycle over a thousand times per day depending on the cooking load. Therefore, at the very least, they require a much more robust maintenance schedule than the above-mentioned dampers. And given the notorious lack of preventive maintenance in the food service industry—especially for equipment above the ceiling that you cannot readily see or access—this again should give an engineer pause. Airflow-proving switches make sense in many applications, but how long will pressure sensors last in grease ducts before becoming clogged with either grease or water? Is anyone monitoring this?

Above and beyond the concern of installing modulating dampers inside high-temperature grease ducts, there is the concern of how these dampers are actually controlled to supposedly save energy. Again, a grease duct is not a good place to install pressure sensors. But how else do you control the dampers and the VFD? And what happens when the pressure sensor becomes fouled? Who will clean, repair, and/or replace these sensors on a regular basis?

It has been said that if one installs an ultraviolet system, this should take care of this particular problem. But will it? The industry needs to see case studies and testimonials showing proven energy savings before it assumes this to be correct. It would seem that even with a UV system, there will still be particulate matter that can get inside the duct. Besides, what prevents duct cleaners from spraying these sensors with hot water or steam, even if on a reduced cleaning schedule?


<< First < Previous 1 2 Next > Last >>

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.