The costs and risks of damper-based controls in kitchen ventilation

Engineers must think in terms of total safety and optimal energy efficiency when designing kitchen ventilation systems of the future.

04/08/2014


A hood layout with dampers. Courtesy: Melink Corporation.There is only one practical application for installing modulating dampers in high-temperature grease ducts over kitchen hoods serving commercial cooking equipment: A high-rise building in an urban setting with a kitchen having multiple hoods totaling over 10,000 cfm that are located on a lower level where there is no other way to exhaust the effluent other than design a single chase and duct to a single fan located on a much higher level.

It is typically more cost-effective on a construction and operating basis, as well as less risk-prone from a liability standpoint, to minimize the length of high-temperature grease ducts. This is why, for example, most hotel, hospital, and other large commercial kitchens are designed as part of a single-floor building and only connected to a multi-story building. This design eliminates the first cost of installing a duct 2, 5, 10, or more floors, the waste of valuable space in a high-rise, and the risk of extending a potential fire hazard any further than necessary. And it facilitates a dedicated fan per hood design without the need for dampers—the benefits of which will be explained later in this article.  

But even in a high-rise building, purposely designing “obstructions” in a long, high-temperature grease duct that is otherwise designed to convey heat, smoke, and grease vapors out and away from the building is problematic for three reasons:

Liability concerns: The longer the high-temperature grease duct, the greater the probability of distributing grease into areas of the building beyond the kitchen. Because grease is a combustible substance, this poses a potential risk. This is why codes require regular cleaning of kitchen hood, ducts, and fans. High-rise buildings with long ducts and obstructions are inherently more exposed from a liability standpoint than are single-story buildings with short ducts and no obstructions.  

Energy penalties: Long ducts with multiple 90-deg turns and dampers add resistance to airflow and require the fan to operate at a higher speed than otherwise necessary to move a specified air quantity. Given that one purpose of these dampers is to purportedly save fan energy, it is a step in the wrong direction. In fact, if the cooking load is fairly steady and/or the controls are not highly reliable, the long ducts, additional 90-deg turns, and installed dampers will increase rather than decrease overall energy usage.

Maintenance issues: Modulating dampers are constantly cycling and have a limited number of cycles before they will eventually fail. Even a million-cycle rating could be limited to a couple years of operation depending on the variability of cooking operations and the effect of the heat, grease, and quarterly cleanings on their overall life. No architect or engineer wants to have a damper fail in a high-rise building that is serving hundreds of employees, patients, and/or visitors. Who will inspect, repair, and replace these relatively inaccessible devices before such an occurrence?

A hood layout without dampers. Courtesy: Melink Corporation.Therefore, engineers and consultants should give serious pause before designing modulating dampers into high-temperature grease ducts in high-rise buildings. Yes, the dampers might be allowed by code and approved by a listing organization, but that does not eliminate the three problems mentioned above—and their associated costs and risks.

Fire dampers are different than modulating dampers. Fire dampers are designed to be 100% open all the time unless there is a fire, in which case they go 100% closed. They are specifically designed for applications like high-rise buildings to contain any smoke and fire rather than allow them to spread to other floors. And they typically rely on simple gravity and a fusible link—which easily can be replaced on a regular schedule—to provide fail-safe performance. Some fire dampers may use an actuator, which is subject to mechanical maintenance in a way that gravity fire dampers are not, but it is far less prone to repair and maintenance issues than constantly moving modulating dampers.

Motorized back-draft dampers are also different than modulating dampers because they are either 100% opened or closed—and cycle only up to two times a day. They are specifically designed for applications in the north where extremely cold and dense outside air can “drop” through the duct and affect indoor temperatures, which in turn can increase the heating load. Fortunately, they only operate before cooking starts and after cooking ends, and do not require the use of air pressure sensors. And though this is a subsystem with moving parts, the relatively minimal cycling and simple open/close sequence makes them less prone to repair and maintenance issues. Plus, they can be installed in a more accessible and serviceable location such as a mezzanine or the outlet of the fan.  

Modulating dampers are constantly moving and can cycle over a thousand times per day depending on the cooking load. Therefore, at the very least, they require a much more robust maintenance schedule than the above-mentioned dampers. And given the notorious lack of preventive maintenance in the food service industry—especially for equipment above the ceiling that you cannot readily see or access—this again should give an engineer pause. Airflow-proving switches make sense in many applications, but how long will pressure sensors last in grease ducts before becoming clogged with either grease or water? Is anyone monitoring this?

Above and beyond the concern of installing modulating dampers inside high-temperature grease ducts, there is the concern of how these dampers are actually controlled to supposedly save energy. Again, a grease duct is not a good place to install pressure sensors. But how else do you control the dampers and the VFD? And what happens when the pressure sensor becomes fouled? Who will clean, repair, and/or replace these sensors on a regular basis?

It has been said that if one installs an ultraviolet system, this should take care of this particular problem. But will it? The industry needs to see case studies and testimonials showing proven energy savings before it assumes this to be correct. It would seem that even with a UV system, there will still be particulate matter that can get inside the duct. Besides, what prevents duct cleaners from spraying these sensors with hot water or steam, even if on a reduced cleaning schedule?


<< First < Previous 1 2 Next > Last >>

BRUNO , PA, United States, 05/28/14 12:13 PM:

EXCELLENT INFORMING ARTICLE
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
World-class maintenance: The three keys to success - Deploy people, process and technology; 2016 Lubrication Guide; Why hydraulic systems get hot
Your leaks start here: Take a disciplined approach with your hydraulic system; U.S. presence at Hannover Messe a rousing success
Hannover Messe 2016: Taking hold of the future - Partner Country status spotlights U.S. manufacturing; Honoring manufacturing excellence: The 2015 Product of the Year Winners
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Digital oilfields: Integrated HMI/SCADA systems enable smarter data acquisition; Real-world impact of simulation; Electric actuator technology prospers in production fields
Improving flowmeter calibration; Selecting flowmeters for natural gas; Case study: Streamlining assembly systems using PC-based control; CLPM: Improving process efficiency, throughput
Putting COPS into context; Designing medium-voltage electrical systems; Planning and designing resilient, efficient data centers; The nine steps of designing generator fuel systems
Warehouse winter comfort: The HTHV solution; Cooling with natural gas; Plastics industry booming

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role that compressed air plays in manufacturing plants.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me