The basics of emergency illumination


Battery-powered sources

Figure 2: In the absence of normal ac power, a battery-powered fluorescent emergency ballast (FEB) provides a minimum of 90 minutes of emergency support to one or more fluorescent lamps, vital to life safety programs and required in all commercial, industThe emergency egress illumination power sources have two distinct categories: battery-powered sources and an emergency generator.

Battery-powered sources must comply with NFPA 111. All of the battery-powered systems must comply with the UL 924 standard, which is consistent with NFPA codes and IBC.

The most common battery-powered lighting source is a self-contained emergency lighting unit, which incorporates lamps in combination with a battery source and charger within a single enclosure. These units are sometimes referred to as either “bug-eye” or “frog-eye” units within the trades. Figure 1 depicts a typical self-contained emergency lighting unit. The units are generally powered by sealed, maintenance-free, lead acid batteries. These batteries have proven to be highly reliable and under most conditions need replacement at 7-year intervals. The units are circuited from an unswitched circuit, which supplies the local general lighting and turns on when the voltage serving the local general lighting drops to 80% of nominal. Upon return of normal power, the units will remain on for a minimum of 15 minutes.

Functional testing of these units can be accomplished via multiple methods. They include: an integral test switch; remote infrared handheld device, which one simply aims at the unit; and a factory-installed integral electronic device that automatically initiates code required tests. The automatic feature must produce an audible alarm with flashing LED if a test failure occurs. One can presume that if the unit is not in alarm and the device is UL listed for self-testing, then the testing requirement is satisfied and sufficient for the AHJ. Witnessing the actual test is not required along with the documentation. The critical design concern for bug-eye placement is to maintain a minimum of 1.0 fc along the entire length and width of the designated pathway of egress.

Figure 3: A three-phase central lighting inverter system improves load efficiency, allowing output load balancing and easy building electrical system integration. Uninterruptible no-break transfer provides seamless switching from normal to emergency ac poSome of these self-contained units have sufficient power to accommodate exit lights and remote lamp heads, which can be located adjacent to legally required exterior pathways to provide required emergency illumination levels. Exit signs must comply with UL 924 for luminance and with the AHJ for sign color and lettering size. The requirements vary among jurisdictions, so it is prudent to check the specifics before specifying exit signs. The two standard types of internally illuminated exit signs either internally house a powered source of light or are self-luminous signs. The most common type internally houses a source of illumination, either LED or fluorescent lamps. Both of these lighting sources use sealed, maintenance-free nickel-cadmium batteries. Exit signs are unswitched and continuously illuminated. They will revert to their battery power when the normal power drops below 80% of rated voltage. All of the testing requirements are the same as self-contained emergency lighting units. Fluorescent exit signs are required to have two lamps by code, in case one fails. The fluorescent lamps have an expected rated lamp life of 20,000 hours. The LED sources use less energy than the fluorescent lamps and have an expected lamp life of 50,000 hours.

Self-luminous exit signs are either self-powered or energy-storage type. The self-powered luminous exit signs contain tritium gas and provide continuous luminance for a minimum of 10 years. The stored energy type of luminous exit signs uses a strontium oxide aluminate compound to store ambient light, releasing the stored energy when the ambient source is turned off. The estimated useful life is in excess of 20 years. Both of these sources are listed for use in hazardous locations because they do not require external power sources and pose no threat of ignition in a hazardous environment.

Should the aesthetics of a given space preclude the use of the “bug-eye” type of emergency egress lighting, the engineer can incorporate an emergency fluorescent power unit within the area lighting fixtures. The packaged unit is self-contained with a built-in battery, battery charger, and inverter. (See Figure 2 for a typical self-contained unit.) It can power a single fluorescent lamp within the area lighting fixture continuously at a rated initial output of 1100 lumens. The packaged unit must provide at least 60% lumen output after 1.5 hours. The unit must be connected to an unswitched circuit, which serves the area lighting fixture. The unswitched circuit is permitted to run in a common conduit with the normal power branch circuitry. All of the periodic functional testing requirements as outlined in NFPA 101 must be accommodated by each packaged unit. The self-contained units can be remote mounted from the lighting fixture served. These units are capable of illuminating several lamps contained in multiple light fixtures and have power capacities up to 250 W.

The most comprehensive battery-powered emergency egress system incorporates a lighting inverter system, which is UL 924 listed and can meet the 90-minute requirement. The larger scale inverters have built-in panelboards and serve the emergency egress lighting directly. Achieving adequate lighting levels is fairly straightforward (see Figure 3). Since inverters are used exclusively to serve emergency lighting, the circuitry of emergency lighting is segregated from normal power sources. The inverters can range up to 130 kVa in size. Because one typically is illuminating only about 0.15 W for the entire emergency egress lighting system, most inverters are 30 to 60 kVa. The batteries’ sizes are proportional to the kVa rating of the inverter.

Figure 4: Stored energy system serving as a stored emergency power supply system (SEPSS), as opposed to a stored energy system being supplied from an EPSS. Courtesy: Affiliated Engineers Inc.Engineers should use caution when sizing the inverter because the amount of electrolyte contained in the batteries might require continuous ventilation of the space, since it exceeds 50 gal for unsprinklered or exceeds 100 gal for sprinklered buildings (NFPA 1: Fire Code Chapter 52). The purpose of this requirement is the possibility of excess hydrogen being generated during the recharging cycle. The environmental and location requirements are outlined in NFPA 111. The main requirement is that the inverter system must be installed in a room separate from the normal power service entrance over 1000 amp and greater than 150 V to ground. The room must be dedicated for the inverter; n storage is permitted within the dedicated space. Ultimately, the inverter location and space requirements must be approved by the AHJ.

A typical one-line is included for an inverter system referred to an emergency power supply system (EPSS) in NFPA 111 Appendix B (see Figure 4).

The emergency lighting inverter, when used in conjunction with selected luminaries, will provide more than adequate egress illumination. Figure 5 represents a computer-generated output of the expected photometric results based on the proper spacing of the designated emergency lighting fixtures for a medical college.

Charles , NC, United States, 08/15/13 08:18 AM:

I would like to add the following to Mr. Flickinger's article.

1. In the US as required by various codes, all emergency lighting must provide minimum levels of performance for at least 90 minutes after the failure of normal electrical lighting. This is independent of whether the emergency lighting is powered by battery or generator; is electrical or non-electrical (eg. utilizing photoluminescent or radioluminescent lighting technologies).

2. Exit signs, so long as they are listed to the UL924 performance standard, meet code requirements regardless of whether they are electrical or non-electrical (photoluminescent or radioluminescent lighting technologies).

3. Model codes (IBC, IFC, etc.), NFPA 101 (and other NFPA codes), local building & fire codes, and other codes have similar requirements for ITM - Inspection, Testing and Maintenance - of all emergency lighting. This includes electrical and non-electrical emergency lighting - exit signs, egress path markings, etc.

4. Floor level exit signs, listed to UL924, are required by the various codes in certain occupancy types. In general, these are required in certain assembly occupancies. Additionally, some local codes also require floor level exit signs in other occupancies such as schools, some health care facilities and public buildings. The performance & illumination requirements, for floor level exit signs are the same as for exit signs installed above the door.

4. Floor level luminous egress path markings, as specified in NFPA 101 and required in the model codes (IBC, IFC) and many local codes are generally specified for use in the exit stairways of high rise buildings. These are specified in all codes as "shall be non-electrical..." and "luminous...". They are required in high rise buildings as a direct result of the failure of electrical lighting (normal lighting and emergency lighting) during the emergency evacuation of the World Trade Center in 2001, and the widespread belief in the code community that electrical lighting (normal or emergency) was not always present during emergency evacuations.

5. Lighting controls are not universally permitted in the means of egress. (Under NO circumstances, if they are used to control normal electrical lighting, are they to interfere with the proper operation of emergency lighting. Lighting controls are NOT permitted to be used to control the operation of emergency lighting.) The model codes (IBC, IFC) do not allow the use of lighting controls in the means of egress. NFPA 101 conditionally allows the use of lighting controls in the means of egress; this language has been recently updated to reflect concerns in the code community that lighting controls used to achieve energy savings, must not compromise the operation of lighting needed to preserve life safety during an emergency evacuation.

Finally, it is my opinion that lighting in the means of egress can be safely dimmed to save energy. But, if lighting controls are used to turn off lighting required to provide the minimum illumination levels, measured at the walking surface as specified by the various codes, these lighting controls are unsafe to use. Again, my opinion is that once an electrical light is powered off, there is no absolute assurance that the lamp or fixture will start up when needed for an emergency evacuation. Lighting controls add an unacceptable level of complexity to the safe operation of lighting needed to provide the minimum illumination levels in the means of egress.

(Disclosure: I am the Operations Manager for EverGlow NA, Inc - We manufacture non-electrical photoluminescent emergency lighting.)
Anonymous , 09/13/13 08:14 AM:

The life safety code, article 7.10 states that "new sign placement shall be such that no point in an exit access corridor is in excess of the rated viewing distance or 100ft from the nearest sign. I interpret that as a maximum of 200' between signs.
GARY , CA, United States, 02/05/15 02:38 PM:

I am not seeing the mentioned conflict between IBC/IFC and NFPA 101. The 1fc minimum requirement is when on normal power and the 1fc average (0.1fc initial minimum; 0.06fc 90-minute min; 40:1 max:min ratio) is a requirement when on emergency power.
Another requirement not to step over in NFPA 101 is* Required illumination shall be arranged so that the failure of any single lighting unit does not result in an illumination level of less than 0.2 ft-candle (2.2 lux) in any designated area.
I assume this is a normal power requirement as otherwise implementing the following requirements becomes interesting...
7.9.2 Performance of System.* Emergency illumination shall be provided for not less than 1-1⁄2 hours in the event of failure of normal lighting. Emergency lighting facilities shall be arranged to provide initial illumination that is not less than an average of 1 ft-candle (10.8 lux) and, at any point, not less than 0.1 ft-candle (1.1 lux), measured along the path of egress at floor level. Illumination levels shall be permitted to decline to not less than an average of 0.6 ft-candle (6.5 lux) and, at any point, not less than 0.06 ft-candle (0.65 lux) at the end of the 11⁄2 hours. A maximum-to-minimum illumination uniformity ratio of 40 to 1 shall not be exceeded.

Gary Conway - CES Engineering
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
2016 Top Plant; 2016 Best Practices on manufacturing progress, efficiency, safety
2016 Product of the Year; Diagnose bearing failures; Asset performance management; Testing dust collector performance measures
Safety for 18 years, warehouse maintenance tips, Ethernet and the IIoT, GAMS 2016 recap
Big Data and bigger solutions; Tablet technologies; SCADA developments
SCADA at the junction, Managing risk through maintenance, Moving at the speed of data
Safety at every angle, Big Data's impact on operations, bridging the skills gap
Ensuring SCADA/HMI cybersecurity; Optimize manufacturing value in real-time; Simplifying drive-based and controller-based automation
Tying a microgrid to the smart grid; Paralleling generator systems; Previewing NEC 2017 changes
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role of plant safety and offers advice on best practices.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me