Stinson-Remick Hall Multidisciplinary Engineering Building

New construction: Stinson-Remick Hall Multidisciplinary Engineering Building; BSA LifeStructures

08/09/2012


Stinson-Remick Hall houses both undergraduate programs and research activities for the College of Engineering. Courtesy: Tony Frederick, Tony Frederick Photography (Click to enlarge)Project name: Stinson-Remick Hall Multidisciplinary Engineering Building

Location: South Bend, Ind. (Notre Dame)

Firm name: BSA LifeStructures

Project type, building type: New construction, school (college, university)

Project duration: 3.5 years

Project completion date: Dec. 1, 2009

Project budget for mechanical, electrical, plumbing, fire protection engineering only: $19.25 million

Engineering challenges

Stinson-Remick Hall is the most complex mixture of program, function, and engineering on Notre Dame’s campus. The facility houses the Researchers work in the clean room manufacturing and research environment. Courtesy: Matt Cashore, University of Notre Dame (Click to enlarge)university’s first clean room environment where white-suited researchers move carefully through a highly sterile environment. Inside, specialized lighting, power, vibration control, and air movement support the nanofabrication process. The nanofabrication space is actually three levels with a lower level equipment and service intensive subfabrication space supporting the specialized equipment needs. An upper level contains a bank of air handlers to create a constant flow of air down through the floor, always moving potential contaminants away from the work surface. This three-level volume is wrapped in more traditional research and classroom spaces. The building contains research space for material characterization, an energy center, and a nanoscience and technology center. The clean room supports the nanofabrication lab (an academic and research space). With research-intensive functions, the building operates 24/7 and needs to maintain strict environmental controls. The undergraduate academic learning center is the core of the building, allowing for multiple possibilities for collaboration among disciplines. The research and learning occurring in Stinson-Remick Hall is as groundbreaking as it is energy intensive. So, how did the designers create a facility that achieved LEED Gold status? Another challenge was designing a facility that could meet the diverse requirements of The mechanical space inside of Stinson-Remick Hall is shown. Courtesy: Robert Canfield (Click to enlarge)the building.

Solutions

There are two key sustainable strategies that have helped Stinson-Remick Hall achieve LEED Gold status and reach new levels of energy efficiency. First, the nanotechnology research laboratories at Stinson-Remick Hall are equipped with fume hoods that require total exhaust to control chemical vapors. Makeup air to the laboratories must be conditioned and delivered continuously. Therefore, strategies for reducing airflow were implemented without compromising laboratory personnel safety. Airflows were lowered to the minimum requirement at all operating times and variable air volume systems are set to provide only the amount of air the fume hoods require based on the sash position. The use of fume hood occupancy sensors reduces the airflow to even lower levels when the laboratory is void of personnel.

The second key sustainable strategy involves the university’s central chilled water plant that is turned off in late fall and stays dormant until spring. Although Stinson-Remick Hall uses a high percentage of See-through glass walls provide students and visitors views into the clean room. Courtesy: Tony Frederick, Tony Frederick Photography (Click to enlarge)outside air and an economizer cycle is used to cool most of the spaces in winter, there is one condition that needs to be addressed. The large clean room in Stinson-Remick Hall continuously circulates over 200,000 cfm to maintain the quality of air required for the nanofabrication research. The clean room equipment, lights, and circulation fans create a large amount of heat all year long, and in summer the central chilled water system cools the air. However, in winter chilled water is not available.

The solution is to use the already installed chilled water system to transfer the heat from the clean room units to the incoming outside air that makes up for the laboratory and clean room exhaust systems. The chilled water system is isolated from the campus system. The building pumps are energized to circulate water through all the cooling coils in all the air-handling units. Heat from the clean room units is then transferred to the makeup air-handling units. So, the incoming air to the building is preheated in two stages: first by the heat recovered from the exhaust airstream (via an independent heat recovery system) and then second from the heat generated in the clean room. Small chillers are available in the building for those few mild days in A professor works with graduate students and the solar panels on the roof of Stinson-Remick Hall. Courtesy: Matt Cashore, University of Notre Dame (Click to enlarge)winter when the free cooling option will not meet the full load.

The engineering system is as diverse and complex as the program space. The following is a partial list of the techniques applied to meet the building’s diverse requirements: variable air volume heating and cooling utilizing air tracking control to maintain proper airflow and pressure relationships; variable speed heating, cooling, and process system pumping to meet unique and high-ranging diversities; all-electronic building automation and control system with remote monitoring and system setpoint adjustments; and specialized clean room and laboratory gases and liquids systems including reverse osmosis water, liquid nitrogen, gasified nitrogen, E1.1 purified water, compressed air, a laboratory vacuum, and a host of exotic clean room gases and liquids.

Additional information

View Bala Consulting Engineers Inc.'s presentation on Stinson-Remick Hall Multidisciplinary Engineering Building, Our Challenge: Design the First LEED-Certified Facility on One of the Nation's Most Historical Gothic Campuses.



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.