Snubber components inside transformer enclosures

Placing snubber components inside transformer enclosures creates a dilemma for dry-type transformer manufacturers.

07/18/2012


Some larger consulting firms have resorted to the practice of “defensive engineering,” revising their standard specifications to require snubbers on the primary windings of every distribution transformer to be installed in a data center, including even liquid transformers - without ever performing a systems study. (My apologies here - I guess that in order to be more politically correct I should say instead “some engineers have recently taken a very conservative approach.”)

I think this approach is actually a disservice to the clients of those firms. It adds unnecessary costs to be borne by their clients, adds physical space requirements inside data centers that have a very high-cost per square-foot, and, most importantly, it adds new and unnecessary points of potential failures.

In the case of liquid transformers, I think that the practice of adding snubbers actually makes the installation more likely to fail. Connecting snubbers to liquid transformers requires deliberately compromising their very well-insulated, dead-front elbow connections, and adding components that will be insulated only in open air. Everything inside the transformer tank remains well insulated under dielectric fluid, but the snubber components that are being added outside the tank have only air-insulated live parts that can too easily flashed over to each other or to ground and fail.

Effectively, this is adding large costs (anywhere from $10,000 to $40,000 per transformer), and is adding additional physical space requirements and future maintenance headaches - all in order to make the installation less reliable.

Moreover, the failure of an RC snubber is not an event to be taken lightly. It can be reasonably expected that at some point in time, the capacitor will fail, and it will always fail “shorted.” When that happens, the resistors would be destroyed in a matter of seconds, unless there are fuses installed between the line terminals and the resistors. So, now you have three fuses, three resistors, and three capacitors, all with un-insulated live parts at 15 kV, 25 kV, or 35 kV, all in close proximity to each other, and all in close proximity to the core and coil of the transformer.

Then, the data center owner will ask, “How would I know if a fuse has blown, and my snubber has become disabled?” So now, layered on top of everything else, come the blown fuse detectors and current transformers and other monitoring system components, all again un-insulated live parts, and all increasing the likelihood that if any of these components of the snubber fails violently enough, that failure could trigger a failure of the very transformer that it’s trying to protect.

Figure 1: Typical snubber with MV live parts – capacitor, MOSA, resistors, current-limiting fuses. Courtesy: J. Guentert

I have concerns about this very problem. Most data centers owners who use static UPS systems will tell you about the maintenance chores and rate of failures involved with the filter capacitors in their UPS. A surge capacitor as part of a transformer’s RC snubber network has a relatively easy service duty - under steady state conditions with a smooth 60 Hz waveform, it normally would conduct less than an amp of current. However, when mounted inside the enclosure of a dry-type transformer, right next to the core and coil - which might be operating at around 250 F – I have concerns that the ambient heating will accelerate the aging of the capacitor, and cause it to fail prematurely. A violent failure involving a case rupture could spew liquid and shoot metal shrapnel into the core and coil.

Even metal oxide surge arresters (MOSAs), which are frequently mounted inside the enclosures of dry-type transformers, don’t like that kind of ambient heat, and care must be taken to mount them near the intake air vents, and away from the core and coil. These arrestors are typically rated for application in an ambient air temperature of 40 C, which is easily exceeded inside a dry-type transformer case, and the failure of an arrester can also be a violent event.

Figure 2: Violent failure of intermediate-class MOSA, with polymer housing (failure attributed to excessive ambient temperature within enclosure). Courtesy: J. GuentertIn contrast to dry-type transformers, liquid transformers generally use dead-front elbow-type MOSAs, which are located outside the tank, so that even a violent failure can’t touch the core and coil.

Moreover, those arresters are generally rated for application in an ambient temperature of 85 C.
Placing all of these snubber components inside transformer enclosures is creating a dilemma for dry-type transformer manufacturers, who are now between a rock and a hard place. By and large, transformer manufacturers are very concerned about the possibility of failures of all of these snubber components they are being asked to install in their enclosures, and they would prefer not to install them. Yet, they realize that if they don’t install them, then the transformer itself can become susceptible to catastrophic failure from switching-induced transients. (Again, this is not a transformer problem - it’s a systems problem.

So far, I’ve heard of only two incidents of snubber component failures. But, the widespread application of RC snubbers inside transformer enclosures is a relatively new thing, a recent trend that began just 5-10 years ago. Only more time and more experience will tell what their longevity is and what modes of failure will occur.



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Leaders Under 40 program features outstanding young people who are making a difference in manufacturing. View the 2013 Leaders here.
The new control room: It's got all the bells and whistles - and alarms, too; Remote maintenance; Specifying VFDs
2014 forecast issue: To serve and to manufacture - Veterans will bring skill and discipline to the plant floor if we can find a way to get them there.
2013 Top Plant: Lincoln Electric Company, Cleveland, Ohio
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.
Electric motor power measurement and analysis: Understand the basics to drive greater efficiency; Selecting the right control chart; Linear position sensors gain acceptance
Protecting standby generators for mission critical facilities; Selecting energy-efficient transformers; Integrating power monitoring systems; Mitigating harmonics in electrical systems

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.