Simplified safety: fail-safe functionality for hazardous environments

Incorporating fail-safe functionality into intrinsically safe technology simplifies system setup and maintenance reducing control costs.

06/14/2011


Installing fail-safe machine control systems in areas that have explosive atmospheres has been a problem because the products normally used in most machine-control equipment may cause sparks when disconnected. Any such sparks in an explosive atmosphere are dangerous to life, limb, and equipment.

The ultimate solution is to redesign the equipment to limit voltages and currents to levels where generation of sparks is impossible. That is, of course, good news for everyone, from the fire department in the surrounding community to the maintenance worker at the potential point of ignition. No disaster is a good disaster!

It sounds easy, but putting this concept into practice requires completely redesigning the control electronics from the semiconductors up. This makes the equipment intrinsically safe, meaning that explosion proofing is not an add-on. It’s not something like a shield that could be defeated or fail. It’s part of the equipment’s basic design.

In intrinsically safe equipment, all voltages and currents are limited to values that ensure that sparks cannot be generated. In addition, all electronics contain circuit elements, such as capacitors or MOVs in parallel with switch contacts to absorb kickback energy when interrupting currents in inductive circuits, and to bleed static charges that may build up anywhere within the equipment.

Limiting voltages and currents, of course, limits the energy available to form kickbacks to levels where the atmosphere itself is able to snuff sparks before they can appear. This is what is meant by “intrinsically safe.”

Intrinsically safe: No failure mode

The advantage of intrinsically safe control components is that there is no failure mode. You can’t get a spark because there is nothing there capable of making a spark. The probability of an explosion collapses to zero for all conditions.

Previously, engineers designing installations where explosive atmospheres could exist have had to set up a safe barrier to protect the dangerous area. While the term “safe barrier” calls to mind images of heavy concrete walls, it’s not like that at all.

Of course, there are walls around areas where explosive atmospheres gather. That’s what makes combustible gases, vapors or dust build up to explosive levels in the first place. Those walls, however, are the problem, not the solution.

The safe barrier solution is, instead, a set of electronic system components that reduce signals to safe, spark-free levels before they enter the hazardous area. Figure [safe barrier] illustrates the concept. Control-system components outside of the barrier all operate at standard voltage, current and power levels.

Incorporating fail-safe components into intrinsically safe control systems eliminates the need for safe barriers. That drastically reduces wiring, cabling, and engineering costs. The reason combining intrinsically safe technology with fail-safe technology is so important is that fail-safe devices, especially, can be located as close to the processes they control as possible. That means putting fail-safe devices within the hazardous atmosphere. That is impossible without including intrinsically safe technology as well.

Explosive atmosphere applications

Hazardous-atmosphere issues arise in many industries, such as chemical, petrochemical, oil and gas, even farming, where organic dust is famous for exploding with no warning. Wherever you have the manufacture, processing, transport or storage of combustible materials, you typically have creation or release of gases, vapors or mist into the environment. There are other processes that create combustible dust, such as grinding and milling, where you’re creating granular solids or dust.

Today, there are intrinsically safe fail-safe devices manufactured for use in explosive-atmosphere environments. These are the first generation of modular solutions for I/O in machine safety loops in hazardous areas, such as the modular distributed SIMATIC ET200 iSP, which is an I/O solution designed for installation in hazardous areas. The ET 200iSPO is programmed in a similar way to the standard SIMATIC PLC and distributed I/O modules with STEP 7 software over PROFIBUS. All these modules can be replaced during operation even under explosive conditions. If technicians need to replace something, they can just go pull out a module, and put a similar module in there, and continue with the operation thus reducing downtimes and further increasing productivity.

Overall, the benefits of combining intrinsically safe technology with machine safety include: no safe barriers required, reduced wiring, one cable carries both standard and safe communications, in-built HART communications, hot swapping, reconfiguration in run mode, integrated diagnostics. No barriers, less wiring, less cabling, less engineering translate directly into less installation and operation costs. Now, hazardous area application designs can be further simplified and made more efficient with the use of a fail-safe intrinsically safe control system solution.

 

 

John D’Silva is marketing manager for Safety Integrated solutions at Siemens Industry. Contact him at john.dsilva@siemens.com

For more information on safety automation related products, visit the Siemens Industry website at www.siemens.com.

www.usa.siemens.com/safety

This article was submitted for the Siemens Simplified Safety custom newsletter. See other articles in the Siemens Simplified Safety newsletter.

www.controleng.com/newsletter/siemens-simplified-safety.html

../newsletter/siemens-simplified-safety.html



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Leaders Under 40 program features outstanding young people who are making a difference in manufacturing. View the 2013 Leaders here.
The new control room: It's got all the bells and whistles - and alarms, too; Remote maintenance; Specifying VFDs
2014 forecast issue: To serve and to manufacture - Veterans will bring skill and discipline to the plant floor if we can find a way to get them there.
2013 Top Plant: Lincoln Electric Company, Cleveland, Ohio
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Bring focus to PLC programming: 5 things to avoid in putting your system together; Managing the DCS upgrade; PLM upgrade: a step-by-step approach
Balancing the bagging triangle; PID tuning improves process efficiency; Standardizing control room HMIs
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.