SIL 3-rated relays: The new 'accepted industry practice’

Accepted industry practice for process safety applications has been the use of standard relays in redundant or triplicate configurations to achieve 'safe’ standard relay functionality. This functionality has included: Unfortunately, the use of standard relays has its drawbacks in comparison to the new breed of SIL-rated relays.

04/15/2007


Accepted industry practice for process safety applications has been the use of standard relays in redundant or triplicate configurations to achieve 'safe’ standard relay functionality. This functionality has included:

  • Amplification

  • Isolation

  • Voltage level translation

  • Monitoring emergency stops

  • Monitoring safety guards.

    • Unfortunately, the use of standard relays has its drawbacks in comparison to the new breed of SIL-rated relays. The first and foremost advantage of the SIL-rated relay is the SIL rating itself.

      The SIL-rated product guarantees a certain level of reliability, predictability and traceability that is directly related to failure consequences as defined in IEC 61508. Achieving this rating for a device is a big deal. It’s not as easy as developing a device according to a standard or a set of regulations and then submitting it to a test facility for 'SIL testing.’

      The IEC organization TÜV begins with an audit of the facility, followed by design reviews, test procedure audits and finally, auditing the quality assurance program.

      To begin to grasp why a relay can have an SIL rating, we have to be aware of the required qualifications according to IEC 61508. For sake of simplicity, a device or process that qualifies for SIL receives input, solves logic and provides output based on logic in a reliable, predictable manner (Fig. 1).

      How the SIL-3-rated relay works

      Discrete components create the circuitry required to monitor the input and output and solve logic based on status. The outputs are electromechanical relays and are the heart of the SIL-3-rated relay. These electromechanical relays are force-guided (positively driven) contacts connected in series with the coils for the series contacts controlled in parallel for redundancy. At a minimum, two channels of this series combination are provided to the user.

      Functionality of these force-guided contacts must be described to see the value being presented. The value begins with knowing that the minimum configuration for a force-guided contact is one normally closed contact and one normally open contact that are mechanically linked. It’s not possible that the 'NO’ and 'NC’ contacts are in the same state. If the 'NO’ contact welds, the 'NC’ contact cannot close when the relay is de-energized (Fig. 2).

      In regard to reliability and safety, this functionality becomes apparent when two 'NO’ contacts from force-guided relays are wired in series, and the 'NC’ contact is monitored. Figure 3 shows how to make sense of the monitoring ability when an 'NO’ contact in the series connection has not opened (welded). In this case, the logic must determine that the series connection should not be energized again due to the fact that the redundancy has been defeated.

      The logic in the SIL-3-rated relays monitors the series combination of the force-guided contacts. Based on input from a SIL-rated PLC, DCS or other controller, the logic determines if it is safe to energize the outputs. This ability to receive input and to determine if the output should be energized qualifies this relay as a miniature SIL-rated relay system. If the relay made the decision not to energize, the controllers can base additional decisions on the status contact provided by the SIL-rated relay to determine the next steps.

      In addition to the proper functional aspects, SIL 3-rated relays have physical improvements over standard relays. These physical advantages also lead to increased reliability. The reliability increase is not only desirable for hazardous locations but is desired for industrial machines in general.

      Applications for the SIL 3-rated relay include:

      • As a reliable, predictable relay

      • Use as an interposing relay on 24-V outputs from SIL-rated PLCs, SIL-rated DCSs or other SIL-rated controllers

      • Monitoring shaft rotation

      • Emergency stop or safety door.

        • Even with shortcomings, using series-wired contacts from standard relays has been considered 'accepted’ industry practice. However, 'best’ industry practice should lend itself to the best available approach. The approach has become more versatile with a relay system that can be configured with redundant or double-redundant (quadruplicate) series contacts. Again, the SIL-3-rating itself provides audited and tested reliability/safety.

          Finally, integrating SIL-rated devices into the overall system will lessen the responsibility/liability of in-house safety calculations, which is possibly the most important result of their use. It makes sense to take advantage of the manufacturer’s willingness to accept responsibility for the SIL calculation of their specific device.

          For these reasons, a new 'accepted industry practice’ has been redefined for the integration of relays in systems requiring SIL-ratings.


          <table ID = 'id3008833-0-table' CELLSPACING = '0' CELLPADDING = '2' WIDTH = '100%' BORDER = '0'><tbody ID = 'id3002853-0-tbody'><tr ID = 'id3002855-0-tr'><td ID = 'id3008753-0-td' CLASS = 'table' STYLE = 'background-color: #EEEEEE'> Author Information </td></tr><tr ID = 'id3001571-3-tr'><td ID = 'id3001573-3-td' CLASS = 'table'> Mike Garrick is lead product specialist for the interface product line at Phoenix Contact, Inc., Harrisburg, PA. He is responsible for power supplies, relays and systems cabling. Garrick was formerly a lead engineer in Phoenix Contact’s automation group. </td></tr></tbody></table>


No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Your leaks start here: Take a disciplined approach with your hydraulic system; U.S. presence at Hannover Messe a rousing success
Hannover Messe 2016: Taking hold of the future - Partner Country status spotlights U.S. manufacturing; Honoring manufacturing excellence: The 2015 Product of the Year Winners
Inside IIoT: How technology, strategy can improve your operation; Dry media or web scrubber?; Six steps to design a PM program
Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Digital oilfields: Integrated HMI/SCADA systems enable smarter data acquisition; Real-world impact of simulation; Electric actuator technology prospers in production fields
Special report: U.S. natural gas; LNG transport technologies evolve to meet market demand; Understanding new methane regulations; Predictive maintenance for gas pipeline compressors
Warehouse winter comfort: The HTHV solution; Cooling with natural gas; Plastics industry booming
Managing automation upgrades, retrofits; Making technical, business sense; Ensuring network cyber security
Designing generator systems; Using online commissioning tools; Selective coordination best practices

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role that compressed air plays in manufacturing plants.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me