Servos versus induction motors: Look at performance, costs

Choosing between servos and induction motors depends on the level of performance required by the application and costs. Induction motors are simple, low-cost, and straightforward. Servos can offer higher performance, faster speeds, and smaller sizes.

09/12/2012


An advanced feature of the Beckhoff AM8000 servomotor is “one cable-technology.” With this technology, the power and process data are transmitted in one standard motor cable instead of two cables. It has a low rotor moment of inertia, very high overload cThe decision to use servos versus induction motors ultimately depends on the level of performance required by the application and costs. The principal strengths of induction motors are that they are simple, low-cost, and represent a very mature technology. Induction motors are also comparatively affordable, straightforward in terms of on/off control, simple to wire, and offer a wide variety of product selection with many vendors able to deliver. In terms of drawbacks, these motors offer limited position control and are typically larger in size.

Higher performance, smaller size

Servos, on the other hand, are more dynamic motors that include a feedback device, such as an encoder or resolver, to control speed and position accuracy. The main strengths of servomotors include much higher performance, the ability to deliver higher speeds, smaller size, and a wide variety of supplementary components. Of course, servos are slightly higher in cost due to the more advanced technology in play. High speeds and torque performance can be limited occasionally by servo drive update time.

Typical squirrel-cage induction motors represent a low-cost choice for velocity control for applications, such as constant speed conveyors, sorters, or similar transmission systems that have reasonable constant loading.  Because induction motor torque is generated by percentage of slip, they tend to have a limited flat torque region based on speed when compared to servos.

Common three-phase induction motor applications include machine tools, cranes, pumps, fans, robot applications, and others. In such applications, a synchronous servomotor could be “overkill” relative to the costs involved. However, both solutions clearly have their place. Depending on the application, servos may still be required based on other performance criteria, such as repetitive robust indexing with repeatable positioning and/or higher velocity accuracy. Other instances of where servo positioning systems are necessary include applications that require a range of supply voltages (such as 115 V ac to 480 V ac).

Accuracy justifies cost

As requirements for accurate positioning, higher speeds, and robust indexing moves with limited dwell time become more critical, it’s easier to justify the additional cost for servos to achieve more accurate positioning control. Typical servomotor applications include higher performance machinery for packaging, metal forming, CNC, woodworking, robotics, and more.

Advanced servomotors available today feature a low rotor moment of inertia and a very high overload capacity. Salient pole-wound technology gives rise to a high copper space factor, which helps attain high continuous torques. Very small end turns result in a small overall length. Fully potted stator provides for a thermally ideal binding of the winding to the motor housing. Potting also mechanically protects winding wires against vibrations.

One-cable technology is another advanced feature where power and process data are transmitted in one standard motor cable instead of two cables. Encoder data, rotor position, multi-turn information, and the status of the thermal conditions in the motor are transmitted reliably and free from interference via a digital interface. The benefits here include significant cost savings, since plug connectors and cables are eliminated at the motor and the controller ends.

- Bob Swalley is motors and drives specialist, Beckhoff Automation. Edited by Mark T. Hoske, content manager, CFE Media, Control Engineering and Plant Engineering, mhoske(at)cfemedia.com.

www.beckhoffautomation.com/drivetechnology  



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.