Servos versus induction motors: Look at performance, costs

Choosing between servos and induction motors depends on the level of performance required by the application and costs. Induction motors are simple, low-cost, and straightforward. Servos can offer higher performance, faster speeds, and smaller sizes.

09/12/2012


An advanced feature of the Beckhoff AM8000 servomotor is “one cable-technology.” With this technology, the power and process data are transmitted in one standard motor cable instead of two cables. It has a low rotor moment of inertia, very high overload cThe decision to use servos versus induction motors ultimately depends on the level of performance required by the application and costs. The principal strengths of induction motors are that they are simple, low-cost, and represent a very mature technology. Induction motors are also comparatively affordable, straightforward in terms of on/off control, simple to wire, and offer a wide variety of product selection with many vendors able to deliver. In terms of drawbacks, these motors offer limited position control and are typically larger in size.

Higher performance, smaller size

Servos, on the other hand, are more dynamic motors that include a feedback device, such as an encoder or resolver, to control speed and position accuracy. The main strengths of servomotors include much higher performance, the ability to deliver higher speeds, smaller size, and a wide variety of supplementary components. Of course, servos are slightly higher in cost due to the more advanced technology in play. High speeds and torque performance can be limited occasionally by servo drive update time.

Typical squirrel-cage induction motors represent a low-cost choice for velocity control for applications, such as constant speed conveyors, sorters, or similar transmission systems that have reasonable constant loading.  Because induction motor torque is generated by percentage of slip, they tend to have a limited flat torque region based on speed when compared to servos.

Common three-phase induction motor applications include machine tools, cranes, pumps, fans, robot applications, and others. In such applications, a synchronous servomotor could be “overkill” relative to the costs involved. However, both solutions clearly have their place. Depending on the application, servos may still be required based on other performance criteria, such as repetitive robust indexing with repeatable positioning and/or higher velocity accuracy. Other instances of where servo positioning systems are necessary include applications that require a range of supply voltages (such as 115 V ac to 480 V ac).

Accuracy justifies cost

As requirements for accurate positioning, higher speeds, and robust indexing moves with limited dwell time become more critical, it’s easier to justify the additional cost for servos to achieve more accurate positioning control. Typical servomotor applications include higher performance machinery for packaging, metal forming, CNC, woodworking, robotics, and more.

Advanced servomotors available today feature a low rotor moment of inertia and a very high overload capacity. Salient pole-wound technology gives rise to a high copper space factor, which helps attain high continuous torques. Very small end turns result in a small overall length. Fully potted stator provides for a thermally ideal binding of the winding to the motor housing. Potting also mechanically protects winding wires against vibrations.

One-cable technology is another advanced feature where power and process data are transmitted in one standard motor cable instead of two cables. Encoder data, rotor position, multi-turn information, and the status of the thermal conditions in the motor are transmitted reliably and free from interference via a digital interface. The benefits here include significant cost savings, since plug connectors and cables are eliminated at the motor and the controller ends.

- Bob Swalley is motors and drives specialist, Beckhoff Automation. Edited by Mark T. Hoske, content manager, CFE Media, Control Engineering and Plant Engineering, mhoske@cfemedia.com.

www.beckhoffautomation.com/drivetechnology  



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
World-class maintenance: The three keys to success - Deploy people, process and technology; 2016 Lubrication Guide; Why hydraulic systems get hot
Your leaks start here: Take a disciplined approach with your hydraulic system; U.S. presence at Hannover Messe a rousing success
Hannover Messe 2016: Taking hold of the future - Partner Country status spotlights U.S. manufacturing; Honoring manufacturing excellence: The 2015 Product of the Year Winners
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Digital oilfields: Integrated HMI/SCADA systems enable smarter data acquisition; Real-world impact of simulation; Electric actuator technology prospers in production fields
Improving flowmeter calibration; Selecting flowmeters for natural gas; Case study: Streamlining assembly systems using PC-based control; CLPM: Improving process efficiency, throughput
Putting COPS into context; Designing medium-voltage electrical systems; Planning and designing resilient, efficient data centers; The nine steps of designing generator fuel systems
Warehouse winter comfort: The HTHV solution; Cooling with natural gas; Plastics industry booming

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role that compressed air plays in manufacturing plants.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me