Send in the engineering troops


CSE: Have you worked on such facilities in the United States and abroad? If so, what are some of the most notable differences?

Talbert: Facilities outside the U.S. have historically placed a greater emphasis on fire-resistive construction and a lesser emphasis on active fire protection such as sprinkler protection.

Bomboy: In addition to our domestic military facilities, we have worked on military bases in Egypt, where the challenge was to design the buildings simply enough, using standard components, so that replacement parts and repair service could be obtained when needed. For military projects, most of the MEP equipment is procured from U.S. manufacturers. However, electrical power in most overseas locations operates at 50 Hz versus 60 Hz in the U.S., and has different delivery and usation voltages; equipment specifications must be carefully tailored to address these differences. Limited availability of skilled local labor and language issues drove an increased level of detail required for successful bidding and construction.

Callan: I have experience working on military and Dept. of Homeland Security projects in the U.S. and abroad. Because these facilities are usually subject only to U.S. codes, regulations, and institutional standards, the main challenges for MEP engineers are climate, utility provisions and their reliability, and available materials and labor.

Crance: We deliver many different project designs both domestically and overseas. The challenges with delivering overseas projects depend on the sponsoring agency and its project goals. Projects supporting country building or redevelopment are often required to be designed around locally available materials and products that will be constructed using locally available craft labor with greatly different skills than we are accustomed to in the U.S. Other considerations for delivering overseas projects include movement of material and equipment across multiple borders, lack of documented codes and standards, and widely varying business practices, both formal and informal. 

CSE: What cutting-edge energy efficiency projects have you worked on at a military facility recently? What design aspects or products were included?

Valdez: The RAIDRS Space Control Facility at Peterson Air Force Base in Colorado is a new two-story building and is a mission critical facility. Unique features of RAIDRS Space Control Facility include the use of a transpired solar collector system, and an accessible floor displaced air distribution system. Transpired solar collectors or solar walls are used as a thermal preheat system, providing passive preheating of outside air in the winter months. Energy codes require high ventilation loads, which represent an enormous energy expenditure given the tremendous volume of outside air that has to be continuously brought in and then heated over the entire heating season. A solar wall system consists of panels that are mounted roughly 6 in. from the exterior south-facing wall of the facility’s main mechanical room. The cavity created between the exterior wall and the solar wall panels fills with outside air that is heated by the radiant heating of the panels. The heated outside air in the cavity is then drawn into the air handling units in the mechanical room and reduces the amount of thermal energy that is needed from natural gas.

Bomboy: Every military project has an energy-efficiency requirement, so most projects take advantage of a combination of energy conservation measures. Our designs have used dedicated outside air systems (DOAS) with energy recovery heat wheels, radiant heating and cooling in floor slabs, condensate recovery, and solar hot water systems. We have also performed energy recovery to preheat domestic hot water by capturing heat energy from shower drains. Efficient lighting systems and lighting controls—task lighting, LEDs, zone controls, etc.—figure into all our designs. In some cases, rooftop photovoltaic (PV) systems have also proven cost-effective. Recent projects make use of GSHP systems to reduce a facility’s annual energy consumption. Depending on geographic location, some of these systems are incorporating supplemental heat rejection capabilities in the form of dry coolers or evaporative cooling towers to address the heating/cooling load imbalance. Other recent projects use solar water collectors to offset energy use associated with heating domestic water. Air-side energy recovery is implemented through use of air-to-air energy recovery systems where dedicated makeup air units are used to enhance energy recovery efficiency. These applications are being incorporated on both domestic and overseas projects. 

Callan: The projects I have worked on were more utilitarian in nature. While energy conservation has always been of primary concern, we achieved these goals with modest investments. 

CSE: How has the military’s emphasis on “net zero” systems affected your work on such projects?

Callan: I applaud the Army’s desire to pursue net zero goals. The army has been a leading force in many areas including science, engineering, and education. Net zero energy buildings (NZEB) are an achievable goal with perseverance and time. However, like my grandfather said, “it’s the journey, not the destination.” My personal engineering philosophy is one of continuous improvement. Some changes will be small and gradual. Some changes will be monumental. Though I agree with the late Daniel Burnham, who said, "Make no little plans. They have no magic to stir men's blood and probably will not themselves be realized," I recognize that many of the engineering feats of today were perfected with gradual and continuous improvement. In other words, no matter how great the goal or objective, the first attempt will be refined and improved over time. 

Current new construction and renovation projects focus on conservation of both energy and water as most of these projects are single facilities. Opportunities to achieve the benefits of waste energy reuse or energy repurpose are limited by the scale afforded by single facilities. For many projects, it is challenging to incorporate the most beneficial systems into the facility design and remain within the first cost constraints of the project. Looking forward, it should be expected that larger-scale projects that provide a total energy solution at an overall installation level will be required to achieve the net zero vision. 

Bomboy: The first step to achieving net zero is to reduce energy consumption. Whether a project has a net zero goal or not, it is important to find cost-effective alternatives for driving down the building energy consumption; photovoltaic systems and solar hot water panels are common considerations. To achieve true net-zero performance, it is essential that MEP collaborate closely with architecture to optimize building footprint and orientation, fenestration, building skin performance—passive or active—and light shelves/shading, in order to treat the building not as a collection of components, but as a coordinated system.

<< First < Previous 1 2 Next > Last >>

Anonymous , 08/16/13 11:04 PM:

The biggest problem with Government Consultants like giving interview here is that they go and tell Air Force, Army, Navy, State Department what they can get for the budget they have, instead of listening to the Captain, Colonel and General, evaluate mission, look at the needs and then do a Charette with all stake holders to come up with needs to be built. Did you see, not one of them discussed charette, you know why? They do cookie cutter design that some of us do first of kind. I have worked on more than 20 bases and at every base concept to performance from scope given to scope performed has changed and every one of them have given me A's, ask how many of these people giving Interview got A for their project? They are satisfied with B+ or A-, not me and reason is this is our country and it is for the soul I work for not for profit or money, although I do not lose either. A good company listens and develops and performs and stays there with post to help on other hand these people who gave interview never go back to see how the things they designed and built are working. I know because I have cleaned up mess from Embassies to posts, bases, commissaried and Test Cells. Please ask them what rating did they win on their projects not that they got small business or minority development and participation award? Thank you,
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Sister act: Building on their father's legacy, a new generation moves Bales Metal Surface Solutions forward; Meet the 2015 Engineering Leaders Under 40
2015 Mid-Year Report: Manufacturing's newest tool: In a digital age, digits will play a key role in the plant of the future; Ethernet certification; Mitigate harmonics; World class maintenance
2015 Lubrication Guide: Green and gold in lubrication: Environmentally friendly fluids and sealing systems offer a new perspective
Drilling for Big Data: Managing the flow of information; Big data drilldown series: Challenge and opportunity; OT to IT: Creating a circle of improvement; Industry loses best workers, again
Pipeline vulnerabilities? Securing hydrocarbon transit; Predictive analytics hit the mainstream; Dirty pipelines decrease flow, production—pig your line; Ensuring pipeline physical and cyber security
Cyber security attack: The threat is real; Hacking O&G control systems: Understanding the cyber risk; The active cyber defense cycle
Designing positive-energy buildings; Ensuring power quality; Complying with NFPA 110; Minimizing arc flash hazards
Building high availability into industrial computers; Of key metrics and myth busting; The truth about five common VFD myths
New industrial buildings: Greener, cleaner, leaner; New building designs for industry; Take a new look at absorption cooling; Offshored jobs start to come back

Annual Salary Survey

After almost a decade of uncertainty, the confidence of plant floor managers is soaring. Even with a number of challenges and while implementing new technologies, there is a renewed sense of optimism among plant managers about their business and their future.

The respondents to the 2014 Plant Engineering Salary Survey come from throughout the U.S. and serve a variety of industries, but they are uniform in their optimism about manufacturing. This year’s survey found 79% consider manufacturing a secure career. That’s up from 75% in 2013 and significantly higher than the 63% figure when Plant Engineering first started asking that question a decade ago.

Read more: 2014 Salary Survey: Confidence rises amid the challenges

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.