Self-priming centrifugal pumps: What you need to know

Most maintenance and operations personnel who work with centrifugal pumps have been warned repeatedly that starting a pump dry can scorch and permanently damage the seals or packing, and that pumping won’t begin if the suction liquid is below the pump’s suction lift. Then they encounter a “self-priming” pump and begin to question all those warnings.

12/17/2013


Figure 1: Use of a secondary priming pump. Courtesy: EASAMost maintenance and operations personnel who work with centrifugal pumps have been warned repeatedly that starting a pump dry can scorch and permanently damage the seals or packing, and that pumping won’t begin if the suction liquid is below the pump’s suction lift. Then they encounter a “self-priming” pump and begin to question all those warnings. So, what’s the real scoop on self-priming pumps?

In fact, no centrifugal pump is truly self-priming in suction lift situations. And while there are several ways to start a pump that’s filled with air, the first priority is always to protect the seal from overheating. This is usually accomplished by cooling and lubricating the mechanical seals and packing with a small amount of liquid that migrates between the stationary and rotating parts.

Protecting the seals

A properly primed pump will have the seal vented, ensuring a continuous supply of pumpage or flush liquid to cool and lubricate the seal. Centrifugal pumps classified as “self-priming” usually have double seals with a barrier fluid in the chamber between them. The barrier fluid floods both seals and supplies the necessary cooling and lubrication to protect them from scorching when the pump is started dry. See the “API Seal Plans” (API 683 / ISO 21049) for more information on double seals and barrier fluids, or contact your seal distributor.

Two common approaches

Assuming the seal has adequate cooling and lubrication, the next concern is whether the fluid is above (flooded suction) or below (suction lift) the pump. The problem, of course, is to create sufficient suction to lift the liquid into the pump. But centrifugal pump impellers can’t pump air. By design, they can only develop pressure differentials in pump housings with liquids, which are commonly 800 times denser than air.

Figure 2: An example of a re-priming pump. Courtesy: EASAOf two common solutions to this problem, the most straightforward is to evacuate the air and draw liquid into the pump using an auxiliary pumping device (see Figure 1).

This assumes the suction line is submersed in the liquid, forming an air seal. The discharge must also have an air seal, which is usually provided by using a ball or flapper check valve to prevent air from being drawn into the pump housing from the discharge line. The secondary “air pump” may be a diaphragm, piston or eductor pump, and may be electrically, mechanically or pneumatically driven.

With the pump suction and discharge sealed, the secondary pump will push the air out and draw in the liquid. When the liquid reaches the level of the impeller, the impeller will begin to pump, forcing the discharge check valve open. A pressure switch will then shut down the secondary air pump.

A second solution is to design the pump housing so that it will retain liquid when both the suction and discharge lines are drained. Suction and discharge nozzles may be located well above the impeller, creating a “tank” below that houses the impeller and volute (see Figure 2). A ball or flapper check valve on the suction or discharge may prevent siphoning of the liquid in the tank when the pump is stopped. When the pump is restarted, the fluid in the tank is sufficient to develop suction lift and draw fluid into the pump, tank and impeller, and to purge the air out the discharge. The pump is said to “digest” or pass the air. With this approach a new or rebuilt pump must be primed initially when it is installed. If the pump tank is later drained for any reason, the pump will not begin to pump. Since the self-priming feature of this pump style is only effective after an initial prime, it might be called a re-priming pump.  For pumps of this nature, the user may consider freeze protection or draining during cold months.

Eugene Vogel is a pump and vibration specialist at the Electrical Apparatus Service Association Inc. (EASA).



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Leaders Under 40 program features outstanding young people who are making a difference in manufacturing. View the 2013 Leaders here.
The new control room: It's got all the bells and whistles - and alarms, too; Remote maintenance; Specifying VFDs
2014 forecast issue: To serve and to manufacture - Veterans will bring skill and discipline to the plant floor if we can find a way to get them there.
2013 Top Plant: Lincoln Electric Company, Cleveland, Ohio
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Bring focus to PLC programming: 5 things to avoid in putting your system together; Managing the DCS upgrade; PLM upgrade: a step-by-step approach
Balancing the bagging triangle; PID tuning improves process efficiency; Standardizing control room HMIs
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.