Selecting energy-efficient transformers

Engineers should know the design concepts for selecting and sizing transformers to help achieve energy efficiency.

03/11/2014


Learning objectives

  • Understand the different types and uses of transformers.
  • Know how to select and size transformers.
  • Understand the concepts of transformer protection.

This article has been peer-reviewed.Transformers are perhaps among the most overlooked components within an electrical distribution system. However, they play a key role in our everyday lives. Every house is fed by a single transformer. In our offices, a single transformer may serve the computers for the entire floor. In hospitals, the operating rooms and intensive care units are typically fed from two separate transformers.

If a transformer fails or is improperly sized, catastrophic outages, which are not quick and easy to fix, could occur. Also, transformers don’t shut off; they continue to use current and generate heat 24 hr a day, seven days a week.

Transformer selection

Transformers are available in many different flavors. High- and medium-voltage transformers (primary voltage greater than 600 V) are available as dry type units, but are more commonly liquid filled or liquid immersed. That liquid is commonly petroleum-based oil, but many companies are starting to offer similar products based on biodegradable seed oil. Commercial buildings operate on low-voltage (primary voltage less than 600 V) predominately, and typically use dry type transformers to step down the voltage from 480 V to 208 Y/120 V or 240/120 V. This article focuses primarily on dry type transformers. However, many of the concepts presented apply to higher voltage transformers as well.

Figure 1: Transformers are available in a variety of sizes and distribution voltages, and can be installed indoors or outdoors. All images courtesy: TLC Engineering for ArchitectureTo select a dry type transformer, you need to answer three simple questions:

  1. What is the purpose of the transformer?
  2. How do I want the transformer to perform?
  3. What options should I select?

Generally, there are three purposes of a transformer: Change the voltage, isolate power systems, and harmonic accommodation. Voltage can be decreased or increased. These transformers are available in either delta- or wye-connected primary or secondary, depending on the distribution voltage and system requirements. They may be single- or 3-phase, and are available in a variety of sizes (see Figure 1). Isolation transformers can be used in health care facilities to minimize the risk of stray currents in the electrical system, or even on a single load that has very sensitive electrical requirements.

How the transformer performs boils down to temperature and efficiency. Transformers are listed with a rate of temperature rise, typically 80 C, 115 C, or
Figure 2: This graph shows transformer rate of temperature rise above ambient, typically listed with 80 C, 115 C, or 150 C temperature rise ratings.150 C. This temperature rating is the rise above ambient (see Figure 2). The surface temperature of a transformer with an 80 C rise is significantly less than
one at a 150 C rise.

How engineers approach energy efficiency is evolving. Every other year, the U.S. Dept. of Energy (DOE) revises many of the energy standards that regulate our industry. Transformers manufactured today, and since 2007, are required to meet the criteria defined under NEMA TP-1 2002. In April 2013, a new rule was adopted that implements new transformer standards, effective Jan. 2016. NEMA TP-1 2002 introduced two significant changes to energy efficiency considerations: Minimum efficiency was defined for each transformer size, and the point where that efficiency was measured changed from full load to 35% of transformer capacity. As a part of the origin of NEMA TP-1, research was performed to determine that most low-voltage distribution transformers are, on average, only 35% loaded. Many manufacturers currently offer a NEMA premium efficiency transformer, which was created prior to the implementation of the April 2013 final rule (see Table 1). Please refer to the NEMA class I efficiency chart for further information on the past, present, and future ratings of transformers.

Source: TLC Engineering for Architecture

The decision of which transformer to provide becomes a decision of which options to specify. Questions that engineers should ask include:

  • Are the transformer windings aluminum or copper?
  • What kind of enclosure do you need for your application?
  • Is it outdoors, or is a NEMA 1 enclosure acceptable?
  • What are the specific requirements of the manufacturer in terms of required space around the transformer?

Some manufacturers require a 3-in. clearance around transformers, while some require a 6-in. clearance. Unfortunately, sometimes 3 in. can make a big difference in designing electrical rooms.


<< First < Previous 1 2 Next > Last >>

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.