Selecting a fire protection system

05/10/2013


Understanding agent characteristics, limitations 

The WFDT is a T-Tap water flow detector for use with a 1-in. National Pipe Thread (NPT) connection. Courtesy: System SensorAs referenced above, various types of firefighting agents are available for achieving fire safety goals. They can take the form of liquids, solids, and gases. However, each agent—whether an aqueous solution, inert gas, or chemical powder—possesses certain characteristics and limitations that must be understood by the design engineer. For example, clean agents, while stored in a highly pressurized liquid state, are applied in a gaseous form that is electrically nonconductive and leaves no residue. Gases or vapors are better suited to suppress fires in the presence of physical barriers or obstructions. However, the extinguishing or inerting concentration of particular gaseous agents needs to be held for a specified period of time, and successful extinguishment is tied to the integrity and ventilation aspects of the enclosure in which the agent is discharged. Upon release of the agent, if complete extinguishment of the fire does not occur within the specified hold time, the fire is likely to rekindle and continue to spread, unless a redundant system or other strategy is in place. 

When considering a specific agent and accompanying system, the following factors warrant consideration: What is the agent’s effectiveness and compatibility with the types of fuels and fires expected—ordinary combustibles, flammable liquids, and so on? Can the agent be discharged on electrically energized equipment? Will the discharged agent leave a residue or otherwise impact the equipment or contents it is designed to protect? Does the agent decompose in the presence of the fire or heat and affect the components to be protected? Are there health or environmental concerns with agent discharge? Should the agent be reclaimed or otherwise contained after discharge? What are the costs for the overall system including maintenance? How quickly can the system be recharged? Has compatibility of system operation with facility operations been sufficiently considered? Does system operation require specialized training of building staff and emergency responders? 

Planning for long-term performance 

When deciding on those fire protection systems that best serve the intended fire and life safety purposes, the long-term effectiveness and performance of the systems need to be incorporated into the decision-making process. Once the systems are commissioned, the occupancy certificate is issued, and the building is in operation, the design team moves on. It is now the owner’s responsibility to keep the building and the respective fire and life safety systems in proper working order. The applicable fire code, which normally applies to existing buildings, will address the need to maintain an appropriate level of safety. This should translate to an effective inspection, testing, and maintenance program for the installed fire and life safety systems. Details of this program should be incorporated into the early stages of the system selection and design process, as it will have a distinct impact on the building’s overall operational costs.

Most design and installation standards contain some information about the necessary inspection, testing, and maintenance activities. For instance, NFPA 2001 includes a chapter entitled “Inspection, Testing, Maintenance, and Training.” However, these provisions can be generic in nature. When it comes to specific types of proprietary or pre-engineered systems, the design, installation, and operation manual furnished by the system manufacturer should be obtained and evaluated before any system is selected. While these manuals tend to be tailored for each individual system installed, sample manuals for the types of applications under consideration can be requested and made available. 

Designing the system to facilitate the work of inspection, testing, and maintenance personnel, as well as contemplating the availability of replacement parts and system supplies, should receive proper priority. Designing the system to best facilitate testing and maintenance activities is not necessarily a provision mandated by the applicable design and installation standard, but doing so will help ensure more cost-effective long-term performance of the system. 

Additionally, if replacement parts and supplies are not readily available but are needed, the resulting disabled or impaired system means that life safety and the owner’s investment are unduly compromised. While not within the scope of routine inspection and maintenance, future building expansion and anticipated changes in building operations also deserve attention. Can the fire protection system once installed be expanded or otherwise modified to address the related change in fire hazard, or will an entirely new replacement system be necessary?   

Making the recommendation 

Providing the appropriate fire protection systems for your client will often require more than just code consulting and compliance with the applicable regulations. A comprehensive fire and life safety strategy needs to be developed and implemented with the overall long-term goals of the building owner clearly articulated, agreed upon by the relevant stakeholders, and properly documented. A competent fire safety analysis and assessment will facilitate the overall strategy, identify the applicable regulations to adequately serve the fire and life safety needs of your client over the expected life span of the building or structure, and more effectively address any gaps in protection. 

The fire protection engineer needs to be knowledgeable and well-versed with the application and limitations of all the different types of fire protection systems that could be used to satisfy the overall fire and life safety goals and objectives for the project. This requires not only an unbiased in-depth grasp of the applicable rules, regulations, available technologies, design principles, and testing protocols, but also a sufficient understanding of the operations for the planned building and the associated fire and life safety risks. As noted above, a comprehensive application guide addressing the numerous types of fire protection systems does not exist. 

So, with all the factors that can come into play, are you prepared to make the recommendation?


Milosh Puchovsky is professor of practice at Worcester (Mass.) Polytechnic Institute’s department of fire protection engineering and a member of numerous NFPA Technical Committees. He is a registered professional engineer possessing 25 years of experience in the field focusing on the performance of fire protection and life safety systems. He also serves on the bBoard of SFPE and is the former secretary to NFPA’s standards council. 


<< First < Previous 1 2 3 4 Next > Last >>

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Leaders Under 40 program features outstanding young people who are making a difference in manufacturing. View the 2013 Leaders here.
The new control room: It's got all the bells and whistles - and alarms, too; Remote maintenance; Specifying VFDs
2014 forecast issue: To serve and to manufacture - Veterans will bring skill and discipline to the plant floor if we can find a way to get them there.
2013 Top Plant: Lincoln Electric Company, Cleveland, Ohio
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Bring focus to PLC programming: 5 things to avoid in putting your system together; Managing the DCS upgrade; PLM upgrade: a step-by-step approach
Balancing the bagging triangle; PID tuning improves process efficiency; Standardizing control room HMIs
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.