Selecting a fire protection system

Fire protection engineers must know what factors come into play when deciding on and recommending a fire protection system.

05/10/2013


Learning Objectives

  1. Understand the factors to consider when determining the need for specific types of fire protection systems.
  2. Learn how codes, standards, and other documents influence the choice of fire protection systems.
  3. Identify the importance of goal setting, loss tolerance, and the application of risk assessment techniques in deciding on fire protection systems. 

Clean agent fire suppression systems have long been the answer to protecting high-end equipment, electronics, and irreplaceable items from fire and the damaging effects of water. This Impulse Technology clean agent system is available with either ECARO-25A principal role of the consulting engineer is the design of building systems that satisfy the overall goals and objectives of his or her client. When it comes to fire and life safety, the fire protection engineer is called upon to design those systems deemed necessary for the project. 

Several questions might be posed: What systems are necessary? Is one type of system or systems more appropriate than another? Are redundant systems needed? Who makes this decision and recommendation, and what influences their thought process? 

Associating client goals with building, fire regulations 

Any building project is a significant investment and undertaken with specific goals and outcomes in mind. Once built, the structure serves the purposes and needs of its owners. The building and its associated systems enable the operations of the overall enterprise contained within, that is, provide a workplace, facilitate healthcare services, support manufacturing processes, shelter people and assets, and so on. 

To ensure that fire and life safety features are sufficiently considered and provided for in the design and construction of a building, governmental regulations come into play and must be adhered to. Therefore, one of the principal needs and goals of the building owner is identification of and compliance with the relevant building and fire regulations. Failing to comply with the applicable rules can prevent occupancy, delaying the use of the building and significantly impacting the overall return on investment. 

The intent of most building and fire regulations is to establish the minimum requirements for safeguarding public health, safety, and general welfare. The key term here is “minimum.” The following questions come to mind: Do the minimum requirements align with the goals and objectives of your client, and the intended operations of the enterprise? Are you confident the minimum requirements provide the desired level of life safety, property protection, continuity of business operations, or preservation of cultural resources should a fire occur? Has this decision been given proper consideration, and have the goals and objectives been adequately articulated? For instance, building regulations have traditionally addressed property protection only to the extent necessary for occupant and firefighter safety. How might this realization impact the overall implementation of the fire protection strategy during not only the design and construction process, but also throughout the life of the building?

It is worthy to note that while model codes serve as the basis for most building regulations in various jurisdictions across the United States, most jurisdictions and governmental agencies amend the various adopted versions of the model regulations, or enact bylaws that override the rules of the adopted model codes and standards. Thus, a uniform level of safety from fire is not necessarily prescribed nor implemented throughout the United States. 

The WFD60, a water flow detector, can be used with 6-in. pipe. This application was in a fire sprinkler closet protecting an office and warehouse. Courtesy: System SensorWhat do building regulations say about fire protection systems? 

Building regulations mandate active fire protection systems, largely automatic sprinkler systems, based upon the occupancy types associated with the building, the size and location of the fire area, and the expected occupant load. For instance, the International Building Code (IBC) requires automatic sprinkler systems in Group A-2 occupancies, such as restaurants, where one of the following conditions exists:

  • The fire area exceeds 5,000 sq ft.
  • The fire area has an occupant load of 100 or more.
  • The fire area is located on a floor other than the level of exit discharge.  

Similar requirements are found in NFPA 5000: Building Construction and Safety Code and NFPA 101: Life Safety Code. Additionally, model codes require sprinkler systems for certain types of buildings regardless of the occupancy type. For example, sprinkler systems are required for all high-rise buildings.

Building regulations also allow for “alternative automatic fire-extinguishing systems” or “other automatic extinguishing equipment,” but provide limited direction on when such systems are needed or should be considered. Depending upon the model code, these “alternative” or “other” systems are identified as wet chemical, dry chemical, foam, carbon dioxide, halon, clean-agent, water spray, foam-water, and water mist. Reference is normally made to the associated NFPA standards for the system under consideration for relevant design and installation provisions, such as NFPA 2001: Standard for Clean Agent Fire Extinguishing Systems or NFPA 17: Standard for Dry Chemical Extinguishing Systems

However, when a building or fire regulation references an “alternative” or “other” system, it usually does so in the context of providing life safety for building occupants, usually as an alternative to the requirement for installing an automatic sprinkler system. 

Property protection and business continuity 

Depending on the facility or operation under consideration, certain fire protection standards do address fire safety beyond life safety and include provisions for property protection and business continuity. However, these standards are not necessarily mandated and referenced by the applicable building and fire regulations. The design engineer needs to be aware of these other standards and how they might impact the overall project and serve to satisfy the overall fire protection goals of the building owner. 

An example of such a fire protection standard is NFPA 76: Standard for the Fire Protection of Telecommunications Facilities. The purpose of NFPA 76 is specifically to provide a minimum level of fire protection in telecommunications facilities, to provide a minimum level of life safety for the occupants, to protect the telecommunications equipment, and to preserve service continuity. 

The design engineer also needs to be aware of any insurance company input, as these loss control and underwriting recommendations typically serve to address property protection and business continuity concerns. Even so, the agreed-upon level of fire protection for the facility still must be considered and gauged with that of any insurance company recommendations. The degree of property protection recommended by the insurance company is normally based on the policy purchased and the overall philosophy of the insurer, not necessarily the long-term objectives and needs of the building owner. 


<< First < Previous 1 2 3 4 Next > Last >>

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Leaders Under 40 program features outstanding young people who are making a difference in manufacturing. View the 2013 Leaders here.
The new control room: It's got all the bells and whistles - and alarms, too; Remote maintenance; Specifying VFDs
2014 forecast issue: To serve and to manufacture - Veterans will bring skill and discipline to the plant floor if we can find a way to get them there.
2013 Top Plant: Lincoln Electric Company, Cleveland, Ohio
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.
Electric motor power measurement and analysis: Understand the basics to drive greater efficiency; Selecting the right control chart; Linear position sensors gain acceptance
Protecting standby generators for mission critical facilities; Selecting energy-efficient transformers; Integrating power monitoring systems; Mitigating harmonics in electrical systems

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.