Safety and risk minimization in the operator control of plant machinery


Validation of specification functions of safety-related parts

Verification and validation are the quality assurance measures required to avoid errors during the design and implementation of SRP/CS which execute safety functions. Part 2 of EN ISO 13849 in particular deals with this subject in depth. For each individual safety function, the PL of the associated SRP/CS must match the PLr. The performance levels of the various SRP/CSs forming part of a safety function have to be greater than or equal to the PLr of this function. If multiple SRP/CSs are interconnected, the definitive PL can be determined using Table 11 contained within the standard.

The design of a safety-relevant control function must be validated by showing that the combination of safety-relevant parts for each safety function indeed meets applicable requirements. That’s one important reason to select suppliers whose products requiring functional safety engineering are already certified to new standards. For example, certified Lenze frequency inverters with the safe torque off (STO) safety function and servo inverters with high-grade functions, such as safely limited speed (SLS) are tested and certified to achieve the highest performance levels. By providing the relevant safety-related parameters and required performance levels, using such certified products makes standards compliance on an overall machine design vastly easier.

Today, there are also powerful software tools to support safety engineering and validation. SISTEMA is a tool provided free of charge by the Institute for Occupational Safety and Health IFA-Germany) for determining the achieved performance level in a machine. Dialog boxes guide mechanical engineers through the process of creating their individual safety functions in a project and entering the safety-relevant parameters for the individual disconnecting paths. Parameters for all components in the safety chain (sensor-logic-actuator) must be entered.

The tool then calculates respective and aggregate performance levels. Lenze takes the tool to the next level by providing a SISTEMA library of its components which have already been certified to the latest standards. The library can be integrated into a project and used, without having to determine and enter individual safety-related parameters for each drive component. This saves time and avoids erroneous entries.

Mechanical engineers who want machines certified in accordance with the new EN ISO 13849-1 are pushing hard for all manufacturers to provide relevant parameters for the components they supply. Towards that end, the entire industry sector is working to define and publish accurate parameters. Creation of a comprehensive global databank is already underway in a joint venture making available the relevant safety-related parameters of functional safety components as provided by suppliers and verified by the TÜV Rheinland. 

Drive-based safety engineering

From a design perspective, the moving parts of a machine pose the most risk to plant personnel. The primary purpose of all safety standards and functions is to safely limit the motion of the drive on demand or in the event of an error. The most effective design approach is to intervene at the place in the machine where the dangerous movement originates—directly in the controller.

Drive-based safety is the integration of functional safety tools in the drive that specifically guard against uncontrolled movement. In the event of anomalous movement, the corresponding ability to stop drives significantly faster than manual or conventional solutions employing safety relays, speed monitors or contactors. Drive-based safety can also simplify machine control systems, thereby driving down cost and expediting risk and hazard assessments.

Integrated drive safety features generally fall into three categories—safe stop functions, safe motion surveillance functions, which may trigger a stop function in the event of a fault, and means of activation, such as safe inputs or a safety bus system. The safety chain comprises sensor input (i.e., light bar, emergency stop button, safe feedback), logic (i.e., safe PLC) and actuator or output (i.e., drive with integrated safety functions).

Obviously, the stop functions are among the most critical safety functions. According to the situation, the drive is shut down in a technically redundant, safe fashion by means of the STO, which prevents the inverter from generating a rotating field that would produce a torque in the motor. Depending on the application, integrated safety functions might include any or all of the following: safe torque off, safe stop, safe maximum speed, safely limited speed, safe tip mode, safely limited increment, safe direction and safe speed monitoring. Building on this basic framework, the latest drive safety modules feature higher-order safety functions, such as safely limited speed and safe direction, with variations including safe operational stop, as well as safe inputs and outputs.

Conventional solutions for drive safety typically required additional external components. That is no longer the case. Drive-based safety gives greater clarity to safety technology and implementation, and simplifies the system structure. One of the positive cost aspects is the savings of external components (e.g., safety switch, speed monitor, guards or a second sensor system for safely limited speed). From a functional point of view, faster shutdown on command or in the event of an error means an increase in safety. Because the safety technology provides status information available in the servo inverter and, therefore, in the PLC, there is also an improvement in the diagnostic possibilities.

The best engineered safety designs break down complex barriers. Drive-based safety reduces space requirements, wiring and hardware needed for external safety engineering. Moreover, the machine operator has the benefits of transparent safety parameters programmed right into the controller. These high-performance drive systems are available in small, modular packages, with safety functions integrated in the drive and even on optional pluggable modules.

Safety modules enable tailor-made scalability with different grades of safety depending on the application and validation standards. Using modular and scalable drive components also means the system is open to subsequent changes to accommodate future safety standards. 

Simplify compliance and certify at the product level

Modern machines are produced with faster lead times and designed to operate at considerably higher speeds than in the past. In the great race to meet production deadlines and budgets, safety must never be an afterthought. The overarching goal for the engineer must be to protect human operators, machines, materials and the plant environment, while maintaining ease of operation, and accomplishing these aggregate objectives at a competitive cost. Operating safely at higher performance dynamics calls for uniform safety concepts at the component, machine and system design levels.

As new machines are designed and built the newer safety regulations are only now coming into effect, which place responsibility for machine safety more squarely on the machine manufacturer, rather than on the end user. The safety landscape especially in manufacturing industries is set to change dramatically. For machine builders the more stringent standards mean design changes and an increased workload with regard to certification of their products. The new standards don’t have to necessitate more complexity. But they do underscore the importance of using all of the design strategies and tools one has at their disposal.

The right design strategies can incorporate certified drive components and advanced safety functions as integrated features. Effective safety measures ensure compliance with valid standards and help to future-proof plant machines and automation systems. Specifying certified components and designing in accordance with the more stringent requirements of international safety standards makes it easier for global customers to purchase products, knowing that safety has been designed into the product.

Chuck Edwards is president of Lenze Americas.

<< First < Previous 1 2 Next > Last >>

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.