Robot builds on insights into Atlantic razor clam dynamics

Mechanical engineers at MIT have developed "RoboClam," which replicates a clam’s ability to burrow into soil while using very little energy.

03/24/2014


The image shows a razor clam and the RoboClam that is built to mimic the functions of a razor clam. Courtesy: Donna Coveney, MITThe Atlantic razor clam uses very little energy to burrow into undersea soil at high speed. Now a detailed insight into how the animal digs has led to the development of a robotic clam that can perform the same trick.

The device, known as "RoboClam," could be used to dig itself into the ground to bury anchors or destroy underwater mines, according to its developer, Amos Winter, the Robert N. Noyce Career Development Assistant Professor of Mechanical Engineering at MIT.

Despite its rigid shell, the Atlantic razor clam (Ensis directus) can move through soil at a speed of 1 centimeter per second. What's more, the animal can dig up to 0.5 kilometers using only the amount of energy contained in a AA battery. "The clam's trick is to move its shells in such a way as to liquefy the soil around its body, reducing the drag acting upon it," Winter said. "This means it requires much less force to pull its shell into the soil than it would when moving through static soil."

To develop a robot that can perform the same trick, Winter and his co-developer, Anette Hosoi, professor of mechanical engineering and applied mathematics at MIT, needed to understand how the clam's movement causes the soil to liquefy, or turn into quicksand, around its shell. Now, in a paper to be published in the journal Bioinspiration and Biomimetics, the researchers reveal for the first time the mechanics behind this process, and describe how the robot can mimic this action.

Mechanics of quicksand

When the razor clam begins to dig, it first retracts its shell, releasing the stress between its body and the soil around it. This causes the soil to begin collapsing, creating a localized landslide around the animal. As the clam continues to contract, reducing its own volume, it sucks water into this region of failing soil. The water and sand particles mix, creating a fluidized substrate – quicksand.

But the timing is crucial. If the clam were to move its shell too slowly, the sand particles would collapse around the animal without fluidizing, Winter says. However, if the clam moved too quickly, it would not give the sand particles enough time to mix with the water flowing past, and they would simply remain stationary. "Our data showed that there was a very abrupt transition from being able to fluidize the soil to not moving the soil particles at all," he said.

To develop a low-energy anchoring system that can create quicksand around itself in this way, the researchers built a mechanical puppet clamshell, consisting of two halves that can move together and apart in a similar way to an accordion. The puppet clam is connected to a rod, which can open and close the shell and push it up and down, creating the same contractions as the animal can achieve.

To make it easier to test their RoboClam prototype in salt water, the researchers used a compressed air system to power the expansion and contraction of the shells. Winter's team is now developing an electronic version, which will make it compatible for use with underwater vehicles developed by the team's sponsor, Bluefin Robotics, an MIT spinout based in Quincy, Mass.

Energy-saving anchoring

Winter first began developing the RoboClam for his PhD research in 2006, alongside Hosoi. The researchers wanted to find a way to anchor autonomous underwater vehicles to a seabed or riverbed without consuming a great deal of energy. Robotic vehicles have limited battery power, so any energy consumed by the anchoring system would reduce the device's operating time.

"You might be operating these vehicles in a current, and need them to be stationary - for example, to monitor a biological situation, or for military purposes," Winter said. "You wouldn't want the vehicle constantly spinning its propellers in order to stay in one place because that just wastes energy, so it would be nice if you could just deploy an anchor and maintain your position without expending any energy."

In addition to anchoring underwater vehicles and detonating mines, the RoboClam could also be used to lay underwater cables, Winter says. Companies that lay trans-Atlantic cables traditionally use a ship to drag a sled along the bottom of the ocean to dig a trough, lay the cable, and cover it over. However, when the depth of the ocean water drops to 10 meters or less, it becomes too shallow for the ships to move through. This means human divers have to take over laying and burying the cables, which is both time-consuming and expensive. "Having a system that could just latch onto the cable, work its way along, and automatically dig it into the soil would be great," Winter said.

Massachusetts Institute of Technology (MIT)

www.mit.edu 

- Edited by CFE Media. See more Control Engineering robotics stories.



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.