Renovation Silver: On the hill


View the full story, including all images and figures, in our monthly digital edition

Since it was originally completed in 1916, Utah's State Capitol building has been a landmark of civic pride. Modeled after the nation's capitol, the Salt Lake City building architecturally echoes its Washington, D.C., sibling.

Previous renovations to house modern electronic conveniences and other modifications left the building a shadow of its former self, with many false ceilings that covered up historic handcrafted details. The state's other major concern: upgrading the building to withstand a sizeable earthquake, since the capitol is used as an emergency command center.

“The plan was to return it to its original glory and breathe new life into it,” said David Wesemann, Salt Lake City-based Spectrum Engineer's lead engineer for the project.

Challenges and solutions

One of the biggest tasks for the 330,000-sq-ft state capitol was installing 265 base isolators that would protect the capitol from earthquakes up to an 8.0 magnitude. The entire building was jacked up. Shock absorbers were placed on a podium that acts as a terrace around the capitol and creates a 50-ft barrier to potential terrorist activity. A 3-ft-wide mote of air circles the building, allowing enough space for the capitol to move independently during a seismic event. The other major issue engineers faced was renovating the capitol to its original historical design while unobtrusively adding electrical and mechanical systems. The design team ran some ductwork through discontinued airshafts, disguising it in the attic and basement of the building to leave critical historic areas unaffected. Instead of sacrificing historic ceiling space, Spectrum removed the false ceilings that had been installed in earlier renovations and restored the original handcrafted plaster ceilings. Then the walls were thickened for ductwork in vertical distribution.

“It was a year and half of weekly meetings to make sure every single duct would coordinate,” said Todd Rindlisbaker, Spectrum's project mechanical engineer. “There were a lot of surprises that we wouldn't discover until demolition because some of the concrete beams ran in different directions or weren't as wide as they were shown on drawings from 100 years ago.”

Because the ductwork was vertically stacked, if one floor had to be changed, it affected the two floors above or below the two-tier system. After designs were planned around 48 in. of space in the attic for ductwork, the team discovered that only 30 in. remained between the roof structure and the floor of the attic. That meant redesigning the entire quadrant of the building with flat oval ductwork, instead of round, to save space.

Spectrum also performed an energy impact study and changed the electrical distribution specifications from 3 + 3 (three conductors with three dedicated neutrals) to 3 + 1 with an oversized shared neutral and more than 2,000 branch circuits totaling about 1.8 million ft of wire. This resulted in $20,000 in immediate savings and $7,000 in annual energy savings.

The architects wanted the building to appear just as it had in the early 1900s, which meant that smoke detectors had to be hidden in lighting fixtures and cove moldings. Old photographs were used as models for traditional lighting and plumbing fixtures. Original lighting fixtures were restored, refurbished, or replicated. To re-create historic lighting levels, which were darker during the early 1900s, the architects used incandescent lamps, which accounted for 8% of the new lighting fixtures. They were used in special rooms, like the Governor's Ceremonial Office and the Gold Room, where dignitaries meet the governor amid antique furniture, gold leaf accents, and restored chandeliers. The other 92% of lighting fixtures use energy-efficient fluorescent, HID, or LED lamps.

The result

The $212 million capitol renovation project began in design in 2002, with demolition in September 2004. The project was completed in December 2007 and dedicated a month later.

“There's always a great sense of satisfaction when you finish a project,” Wesemann said, “especially since this renovation was designed for the next 100 years and you know it's going to be used by your children and grandchildren.”

The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Doubling down on digital manufacturing; Data driving predictive maintenance; Electric motors and generators; Rewarding operational improvement
2017 Lubrication Guide; Software tools; Microgrids and energy strategies; Use robots effectively
Prescriptive maintenance; Hannover Messe 2017 recap; Reduce welding errors
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Research team developing Tesla coil designs; Implementing wireless process sensing
Commissioning electrical systems; Designing emergency and standby generator systems; Paralleling switchgear generator systems
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me