Real-time power management is a plant manager's secret weapon

Power management system software needs to allow plant managers to control operations to increase system utilization and keep overall costs down

12/05/2013


Figure 1: Estimated production loss $ per outage event for large (50 MW) industrial users. The graph shows the increasing loss in revenue for longer outage times. Production loss per Event = $/kW x Recorded Peak kW. Courtesy: ETAPA modern power management system requires new techniques and cutting edge technology to allow electrical power users and producers to be competitive. In light of rising electricity costs and disruptive power outages, it’s imperative for power management system software to put plant managers in control of operations, maintenance, and planning of the electrical system – resulting in optimum system utilization, lower costs, and financial stability.

This new breed of model-based power management application should have the capability to integrate an active blueprint of the system including system topology, engineering parameters and other pertinent information with time-synchronized-data acquired for the purpose of depicting the actual operation of the system.

Advanced applications and simulation engines should allow improved situational awareness, look-ahead proactive approach and improved decision making for operators under emergency conditions. The same power management system should therefore serve operators, engineers, planners and managers by providing pertinent information to various levels within the enterprise. The information should be available to engineers and planners via desktop clients while the operators and managers can also rely on thin clients. 

Model validation

One of the key advantages of utilizing a model based power management system is maintaining consistency of the network model across engineering, planning, protection and operations department. Traditionally, real-time systems use power system models that differ considerably in detail and structure from the models used for offline studies. Linkages between the different models are typically not maintained, and the different models often have incompatible data formats.

Planning and operating decisions are based on the results of power system simulations. Optimistic models can result in under-investment or unsafe operating conditions while pessimistic models can also lead to unnecessary capital investment, thereby increasing the cost of electric power. Realistic models are needed for ensuring reliable and economic power system operation.

Hence it is a very crucial phase to verify & validate (V&V) the network model with real-time and/or archived data and prepare a benchmarked model for:

  • State estimation / Monitoring
  • Predictive simulation “what-if” analysis
  • Forensic “root cause & effects” analysis
  • Optimization
  • Proactive contingency analysis & Remedial Actions  

This can be achieved by utilizing a power management system that offers traditional simulation analysis tools on the same platform as the real-time operations tools. Doing so avoids the necessity to rebuild and maintain separate network models across various departments. 

Intelligent monitoring

System monitoring is the base function for any power management software. In addition, seamless integration with metering devices, data acquisition, and archiving systems are essential to monitoring software. Real-time or snapshot data are linked to an online model of the system for proper presentation of actual operating status. 

All this information should be accessible to the system operator through advance man-machine interfaces such as an interactive one-line diagram that provides logical system-wide view.

The next step is to process the telemetry data and determine the missing or faulty meter values using advance techniques such as State and Load Estimator (SLE).

The system should also be able to compensate for absence of physical meters by providing virtual metering of devices. Standard power monitoring systems are inadequate since they can only monitor based on the “eyes” you provide in the form of digital measurement devices. These devices can cost $5,000/unit depending upon their complexity and it quickly becomes prohibitively costly to install such meters at every location.

Virtual meters not only improve situational awareness, but also provide a means to alarm equipment (especially low-voltage) that is not visible to a traditional power monitoring system. A model-based power management system uses existing metering devices and makes estimates for the portions of the system that is not monitored.

A chemical plant avoided installation of five such meters and relied on estimated data for non-critical areas and realized a savings of $20,000 in capital expenditure immediately and enjoyed the supplementary benefit of complete system visibility and information for every load in the system.

Dashboards and thin clients

Energy dashboards summarize and record alarm conditions in case of unusual activity and provide continuous visual monitoring of user-selected parameters in any mode of operation. This provision would allow early detection and display of problems before a critical failure takes place. A modern power management system should not only provide monitored data via thin client, but also offer the following key advantages:

  • Utilize the same electrical model as the desktop client and the offline planning model without having to recreate or maintain copies of the model. This results in significant time and cost savings when building Human-Machine Interfaces (HMIs). Traditional power monitoring systems are inexpensive to purchase, but take up a significant amount of time, resources and engineering cost to setup the HMIs. Extensive engineering man-hours are also spent modifying the existing HMIs. While in a model based power management system, the offline study model can be simply transitioned and connected with real-time data.
  • Ability for the operator to recall and run pre-defined scenarios and get a simple decision (go / no go) especially when he/she is facing emergency conditions. Information overload will not only slow down every decision, it may invariably lead to complete system shutdown. 

Online simulation

System engineers and operators must have instant access to energy information and analysis tools that allow them to predict an outcome before actions are taken on the system.

In order to design, operate, and maintain a power system, one must first understand its behavior. The operator must have firsthand experience with the system under various operating conditions to effectively react to changes. This will avoid the inadvertent plant outage caused by human error and equipment overload. The cost of an unplanned outage can be staggering (See Figure 1 at top.)

For industrial and generation facilities that utilize power system analysis applications, the ability to perform system studies and simulate “What If” scenarios using real-time operating data on demand is of the essence. For example, using real-time data, the system operator could iteratively simulate the impact of starting a large motor without actually starting the motor.


<< First < Previous 1 2 Next > Last >>

VENTURA , Non-US/Not Applicable, Mexico, 12/12/13 07:37 PM:

It is a very useful information, thanks a lot
Congratulations.
SATYA , Non-US/Not Applicable, India, 12/22/13 10:49 AM:

Thanks for virtual metering information and its use. More details are welcome!
Can you provide more details on Lincoln Electric particularly the merits on which they have been selected.
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Leaders Under 40 program features outstanding young people who are making a difference in manufacturing. View the 2013 Leaders here.
The new control room: It's got all the bells and whistles - and alarms, too; Remote maintenance; Specifying VFDs
2014 forecast issue: To serve and to manufacture - Veterans will bring skill and discipline to the plant floor if we can find a way to get them there.
2013 Top Plant: Lincoln Electric Company, Cleveland, Ohio
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Bring focus to PLC programming: 5 things to avoid in putting your system together; Managing the DCS upgrade; PLM upgrade: a step-by-step approach
Balancing the bagging triangle; PID tuning improves process efficiency; Standardizing control room HMIs
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.