Compressed air concerns I have serious problems with some of the content of the article, "Recovery and reheat process simplifies compressed air drying" (PE, July 2000, p 82, File 4020).


Compressed air concerns

I have serious problems with some of the content of the article, "Recovery and reheat process simplifies compressed air drying" (PE, July 2000, p 82, File 4020). It might give a false impression to many users of compressed air.

The article talks of the changes in volume at different temperatures. The fact remains that the mass flow of air coming from the air compressor has not changed, only the volume at given conditions.

It is stated that air temperatures as high as 300 F can be obtained. While a small number of process applications may benefit from this figure, there are materials in most compressed air systems that would not be amenable to such a temperature, including O-rings and polycarbonate bowls. One certainly would not want an air supply at this temperature to be supplied to hand tools or through typical hoses.

Even 90-120 F coming from the reheater would not be maintained for long in a compressed air distribution system, with receivers and piping exposed to normal ambient conditions. Much of any benefit of the reheat would be lost by radiant cooling before it reached the points of use.

Most refrigerant-type dryers use the inlet air to reheat the dried air leaving the dryer, but this is limited by the temperature of the inlet air. This approach also precools the inlet air, reducing the dryer load.

A life cycle cost analysis should be done to determine if a reheat system could be justified.-David McCulloch Author's reply: The article "Recovery and reheat process simplifies compressed air drying" is about an efficient way to dry and reheat compressed air, as compared to a refrigerated dryer, and how the reheat system performs these functions.

The observation that mass flow remains constant and the volume changes with temperature is correct and is best illustrated in the article by Fig. 3 (below). This figure shows the changes in volume during the cooling and reheating conditions and indicates that the airflow rate is a constant 7100 scfm during this process. The point is the constant mass flow of air has a greater volume and will do more work when it is warmer. Work, resulting from the use of compressed air, is dependent upon the volume and pressure at the point of use. Hot air has a greater volume than cold air. Therefore, hot air will do more work at the same cost than cold air. According to Charles Law, if the pressure is held constant, the volume will vary directly as the absolute temperature. So if the pressure and power requirements are constant and the air is reheated, then its volume will increase.

Compressed air is used for a wide variety of applications with the most common use being for pneumatic controls and power tools. It is also used in many process-related applications. Examples are companies that use large volumes of compressed air to pneumatically convey product, pharmaceutical plants that use the air in the fermentation process to make drugs, the powder coatings industry is a large volume user, and glassmakers require large volumes of hot, dry air to manufacture glass. Reheat systems are in successful operation for compressed air systems in all of these applications.

Reheat systems can provide a dew point as low as 35 F, depending on the coolant available. Therefore, any increase in temperature, even to temperature near ambient conditions (about 70 F in a typical plant), will increase the compressed air volume and provide additional work at the same cost in power when compared to air at 35 F.

Each application has its own unique needs and will require different air outlet temperatures. The glass and pharmaceutical industries prefer hotter air, as compared to powder coatings applications or air for pneumatically conveying product. A reheat system is custom designed to meet those needs and provide the desired air outlet temperature. The typical application is for compressed air systems that require large volumes of dry, warm air and have flow rates greater than 500 scfm.

While not every compressed air system will require a reheat system, there are numerous applications that need large volumes of warm, dry air. A total cost analysis of a reheat system, taking into account the capital investment and operating expense, is a good way to demonstrate the merits of these systems.-Carl Kozacki, R.P. Adams Co., Buffalo, NY

The Top Plant program honors outstanding manufacturing facilities in North America. View the 2017 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
SCCR, 2018 Maintenance study, and VFDs in a washdown environment.
Welding ergonomics, 2017 Salary Survey, and surge protection
2017 Top Plant winner, Best practices, Plant Engineering at 70, Top 10 stories of 2017
Product of the Year winners, Pattern recognition, Engineering analytics, Revitalize older pump installations
Control room technology innovation; Practical approaches to corrosion protection; Pipeline regulator revises quality programs
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Setting internal automation standards
Knowing how and when to use parallel generators
PID controllers, Solar-powered SCADA, Using 80 GHz radar sensors

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
This digital report explains how plant engineers and subject matter experts (SME) need support for time series data and its many challenges.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me