Radiating cables can solve tricky wireless communication

Leaky feeders can improve communication with moving devices and complex environments.

08/16/2013


Slots in the cable's shielding allow the signal to leak through. Courtesy: ProSoft TechnologyWireless communication depends on antennas to transmit and receive RF (radio frequency) signals. There are many shapes and sizes depending on the nature of the type of transmission and frequency. For this discussion, one useful analogy can be trying to water your garden with a sprinkler.

A central nozzle that sends equal amounts of spray in every direction is like an omni-directional antenna. The signal goes in every direction from a central point. A directional antenna concentrates the signal in a specific direction like a sprinkler that sends out a stream. It can carry a longer distance but covers a smaller area.

A third irrigation technology uses a porous hose that “weeps” water over its length, such that anywhere it runs, water will soak into the ground. The application can be highly controlled by placing the hose in the most critical areas. The same exists in wireless communication where special cable can serve as a continuous antenna over a specific distance, receiving the RF signal as well as transmitting.

Radiating cable is an alternative to traditional RF antenna systems. It solves RF design challenges in certain situations involving moving equipment such as assembly carriers, overhead cranes, and automatic guided vehicles (AGVs). Applications where radiating cable is a consideration include communication in confined spaces, tunnels that snake throughout a process, and large monorail systems requiring consistent RF signal thresholds.

Radiating cable technology, also known as a leaky feeder, has been applied for decades in bi-directional low-frequency radio applications. Highway and railway tunnels commonly use it for emergency radio communication and, more recently, cellular phone connectivity. The technology has also been installed in mines for underground voice radio communications. Now high-speed wireless technologies such as 802.11n with fast roaming may benefit from radiating cable systems, thus extending automation networks to moving equipment.

Radiating cable is similar to standard discrete antennas in many ways. RF energy is sent through the cable and the signal propagates out. Radiating cable, however, does not have gain. As the cable gets longer, the signal gets weaker. Slots in the shield part of the coax, underneath the insulation, allow the RF signal to propagate out and be received along the length of the cable. This effectively creates a long, flexible RF antenna at over 100 m in length.

There are limitations when compared with more conventional antennas. Radiating cable reduces available bandwidth, so 802.11n performance is slower as compared to a multi-stream MIMO antenna system. The cable itself and all the necessary mounting hardware can make for higher material costs and more complex installation. So, in most industrial wireless applications, traditional discrete antennas are recommended unless they are not capable of reliable radio links due to confined spaces or line-of-sight challenges. But where traditional antennas are not practical, radiating cable is a good alternative to investigate.

Jim Ralston and Gary Enstad are product strategy managers for ProSoft Technology.

www.prosoft-technology.com

Read more on industrial wireless coverage at www.controleng.com/wireless



EDMOND , HI, Australia, 09/21/13 07:49 PM:

Good analogy of wireless cables

Regds
Edmond
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Strategic outsourcing delivers efficiency; Sleeve bearing clearance; Causes of water hammer; Improve air quality; Maintenance safety; GAMS preview
World-class maintenance: The three keys to success - Deploy people, process and technology; 2016 Lubrication Guide; Why hydraulic systems get hot
Your leaks start here: Take a disciplined approach with your hydraulic system; U.S. presence at Hannover Messe a rousing success
Flexible offshore fire protection; Big Data's impact on operations; Bridging the skills gap; Identifying security risks
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Applying network redundancy; Overcoming loop tuning challenges; PID control and networks
Putting COPS into context; Designing medium-voltage electrical systems; Planning and designing resilient, efficient data centers; The nine steps of designing generator fuel systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role that compressed air plays in manufacturing plants.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me