Radiating cables can solve tricky wireless communication

Leaky feeders can improve communication with moving devices and complex environments.

08/16/2013


Slots in the cable's shielding allow the signal to leak through. Courtesy: ProSoft TechnologyWireless communication depends on antennas to transmit and receive RF (radio frequency) signals. There are many shapes and sizes depending on the nature of the type of transmission and frequency. For this discussion, one useful analogy can be trying to water your garden with a sprinkler.

A central nozzle that sends equal amounts of spray in every direction is like an omni-directional antenna. The signal goes in every direction from a central point. A directional antenna concentrates the signal in a specific direction like a sprinkler that sends out a stream. It can carry a longer distance but covers a smaller area.

A third irrigation technology uses a porous hose that “weeps” water over its length, such that anywhere it runs, water will soak into the ground. The application can be highly controlled by placing the hose in the most critical areas. The same exists in wireless communication where special cable can serve as a continuous antenna over a specific distance, receiving the RF signal as well as transmitting.

Radiating cable is an alternative to traditional RF antenna systems. It solves RF design challenges in certain situations involving moving equipment such as assembly carriers, overhead cranes, and automatic guided vehicles (AGVs). Applications where radiating cable is a consideration include communication in confined spaces, tunnels that snake throughout a process, and large monorail systems requiring consistent RF signal thresholds.

Radiating cable technology, also known as a leaky feeder, has been applied for decades in bi-directional low-frequency radio applications. Highway and railway tunnels commonly use it for emergency radio communication and, more recently, cellular phone connectivity. The technology has also been installed in mines for underground voice radio communications. Now high-speed wireless technologies such as 802.11n with fast roaming may benefit from radiating cable systems, thus extending automation networks to moving equipment.

Radiating cable is similar to standard discrete antennas in many ways. RF energy is sent through the cable and the signal propagates out. Radiating cable, however, does not have gain. As the cable gets longer, the signal gets weaker. Slots in the shield part of the coax, underneath the insulation, allow the RF signal to propagate out and be received along the length of the cable. This effectively creates a long, flexible RF antenna at over 100 m in length.

There are limitations when compared with more conventional antennas. Radiating cable reduces available bandwidth, so 802.11n performance is slower as compared to a multi-stream MIMO antenna system. The cable itself and all the necessary mounting hardware can make for higher material costs and more complex installation. So, in most industrial wireless applications, traditional discrete antennas are recommended unless they are not capable of reliable radio links due to confined spaces or line-of-sight challenges. But where traditional antennas are not practical, radiating cable is a good alternative to investigate.

Jim Ralston and Gary Enstad are product strategy managers for ProSoft Technology.

www.prosoft-technology.com

Read more on industrial wireless coverage at www.controleng.com/wireless



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Leaders Under 40 program features outstanding young people who are making a difference in manufacturing. View the 2013 Leaders here.
The new control room: It's got all the bells and whistles - and alarms, too; Remote maintenance; Specifying VFDs
2014 forecast issue: To serve and to manufacture - Veterans will bring skill and discipline to the plant floor if we can find a way to get them there.
2013 Top Plant: Lincoln Electric Company, Cleveland, Ohio
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Bring focus to PLC programming: 5 things to avoid in putting your system together; Managing the DCS upgrade; PLM upgrade: a step-by-step approach
Balancing the bagging triangle; PID tuning improves process efficiency; Standardizing control room HMIs
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.