PV reflectivity safe for airports

Glare analysis performed via simulated environment for proposed PV array near airport.

07/06/2011


In April 2010, a 5-MW photovoltaic (PV) array was proposed at a 70-acre site located 1 mile south of Newquay Airport in Cornwall, England. The PV array will have a direct grid connection and export energy to the local utility, Western Power Distribution, and is slated for completion in March 2012. However, airport officials expressed concern about the possibility of sunlight reflecting off the PV panels and creating glare conditions for pilots and air traffic controllers in the tower.

The city council of Cornwall contracted Parsons Brinckerhoff (PB) to conduct a glare analysis.

Creating a geometric model

The PB team analyzed glare conditions quantitatively by generating a simulated environment with 3-D CAD and BIM software. Because the PV system had not yet been designed by a third party, PB’s first task was to estimate the physical size and orientation of the array. The PV designer had decided on a 21-degree tilt-angle fixed toward the south. Given this tilt-angle, PB estimated the physical layout necessary to generate 5 MW and situated it within the proposed boundary.

One significant challenge was simulating sunlight reflections based on the sun’s daily path and its angle changes throughout the year, then incorporating the view from a moving aircraft. The analysis was simplified by selecting static viewer perspectives for the pilot along each runway approach from a specified distance. A third viewer perspective was added for the control tower. Using energy simulation software, the sun’s path through the sky was simulated for one day per month for each month. The project aimed to detect if and when direct glare would be observed from any of the three perspectives. PB generated animations for each perspective for all 12 months to demonstrate the sun’s path and reveal glare occurrences.

To detect glare in the simulations, the PV panels were modeled as mirrors with 100% reflectivity. This was an exercise purely in the geometry between the sun, the PV array, and the viewer perspectives. The model and animations revealed that direct glare would be encountered at one of the viewer perspectives, the approach to runway 30, in the evening during August (see Figure 1). Because the aircraft flies much faster than the sun travels through the sky, the pilot would fly through this glare and experience it only for an instant.

Figure 1: This screenshot shows direct glare from the PV array observed on a Runway 30 approach on an August evening. Courtesy: Parsons Brickerhoff

Analyzing PV reflectivity

Another important factor in determining the effect of glare from PV arrays is to determine the intensity of light reflected from PV panels. While the mirrors used in the computer model had 100% reflectivity, PV panels are observed to reflect very little light.

The Technical Guidance for Evaluating Selected Solar Technologies on Airports report stated that several PV installations at or near airports had not created glare conditions and that PV material only reflected approximately 2% of incident sunlight, which is less than bare soil. Soon after the FAA guidance was published, it was adopted by the U.K. Civil Aviation Authority (CAA). Due to the FAA’s reliable data, PB felt comfortable concluding that even if the geometry did reveal a direct glare occurrence, it would be so minimal that it would not cause a problem.

The short-lived glare and the minimal intensity of light reflected off PV material led the PB team to conclude that glare would not have a negative effect on airport operations.

If glare or reflection from a PV array is a concern, the following items should be included in the project requirements:

  • Rolled glass for diffuse reflection
  • Anti-reflective coating
  • Product demonstration or mock-up arranged with stakeholders.

EXCLUSIVE: Watch this glare simulation video.

Roseman is a supervising electrical engineer and certified project manager with Parsons Brinckerhoff. He is experienced in lighting and power distribution for various types of buildings, parking structures, and streetscapes, as well as aviation lighting. He has been with PB for 12 years.

Click to view a glare simulation clip. Courtesy: Bruce Ross Associates Inc.



The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
A new approach to the Skills Gap; Community colleges may hold the key for manufacturing; 2017 Engineering Leaders Under 40
Doubling down on digital manufacturing; Data driving predictive maintenance; Electric motors and generators; Rewarding operational improvement
2017 Lubrication Guide; Software tools; Microgrids and energy strategies; Use robots effectively
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Power system design for high-performance buildings; mitigating arc flash hazards
Research team developing Tesla coil designs; Implementing wireless process sensing
Commissioning electrical systems; Designing emergency and standby generator systems; Paralleling switchgear generator systems

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me