Pulling uranium from seawater

A new material in development may make fueling nuclear reactors with uranium harvested from the ocean more feasible.

09/19/2012


ISS SourceA new material in development may make fueling nuclear reactors with uranium harvested from the ocean more feasible.

By combining Department of Energy’s Oak Ridge National Laboratory’s (ORNL) high-capacity reusable adsorbents and a Florida company’s high-surface-area polyethylene fibers creates a material that can rapidly, selectively and economically extract valuable and precious dissolved metals from water.

The material, HiCap, outperforms today’s best adsorbents, which perform surface retention of solid or gas molecules, atoms or ions. HiCap also effectively removes toxic metals from water, according to results verified by researchers at Pacific Northwest National Laboratory.

“We have shown that our adsorbents can extract five to seven times more uranium at uptake rates seven times faster than the world’s best adsorbents,” said Chris Janke, one of the inventors and a member of ORNL’s Materials Science and Technology Division.

HiCap effectively narrows the fiscal gap between what exists today and what they need to economically extract some of the ocean’s estimated 4.5 billion tons of uranium. Although dissolved uranium exists in concentrations of just 3.2 parts per billion, the sheer volume means there would be enough to fuel the world’s nuclear reactors for centuries.

The goal of extracting uranium from the oceans began with research and development projects in the 1960s, with Japan conducting the majority of the work. Other countries pursuing this goal include Russia, China, Germany, Great Britain, India, South Korea, Turkey and the United States. Researchers developed adsorbent materials, but none has emerged as being economically viable.

What sets the ORNL material apart is the adsorbents are made from small diameter, round or non-round fibers with high surface areas and excellent mechanical properties. By tailoring the diameter and shape of the fibers, researchers can significantly increase surface area and adsorption capacity. This and ORNL’s patent pending technology to manufacture the adsorbent fibers results in a material able to selectively recover metals more quickly and with increased adsorption capacity, thereby dramatically increasing efficiency.

“Our HiCap adsorbents are made by subjecting high-surface area polyethylene fibers to ionizing radiation, then reacting these pre-irradiated fibers with chemical compounds that have a high affinity for selected metals,” Janke said.

After the processing, scientists can place HiCap adsorbents in water containing the targeted material, which ends up quickly and preferentially trapped. Scientists then remove the adsorbents from the water and the metals end up extracted using a simple acid elution method. They can then regenerate and reuse the adsorbent after conditioning it with potassium hydroxide.

In a direct comparison to the current state-of-the-art adsorbent, HiCap provides significantly higher uranium adsorption capacity, faster uptake and higher selectivity, according to test results. Specifically, HiCap’s adsorption capacity is seven times higher (146 vs. 22 grams of uranium per kilogram of adsorbent) in spiked solutions containing 6 parts per million of uranium at 20 degrees Celsius. In seawater, HiCap’s adsorption capacity of 3.94 grams of uranium per kilogram of adsorbent was more than five times higher than the world’s best at 0.74 grams of uranium per kilogram of adsorbent. The numbers for selectivity showed HiCap to be seven times higher.

“These results clearly demonstrate that higher surface area fibers translate to higher capacity,” Janke said.

ORNL researchers conducted field tests of the material at the Marine Sciences Laboratory of Pacific Northwest National Laboratory in Sequim, WA, and at the Rosenstiel School of Marine & Atmospheric Science and Broad Key Island in collaboration with the University of Miami.



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.