Pressurizing with dust collectors: Making the right decision

Indoor air quality: Choosing positive or negative pressure is a multi-faceted decision

05/20/2013


Figure 1: A cartridge dust collection pressurizing system is installed on the roof of a maintenance building in the harbor of a European coal power plant to prevent ambient coal dust from entering the building. The unit is installed in front of a ventilatPressurization is a well-known ventilation technique in which a positive or negative atmospheric pressure is maintained in an isolated or semi-isolated environment. A clear way to illustrate this principle is the example of the healthcare industry, where pressurization has been used for many years for infectious disease control.

A patient with an immunodeficiency disorder will typically be housed in a positive pressure isolation room, which maintains a flow of air out of the room, thus protecting the individual from contaminants and pathogens which might otherwise enter. Conversely, a patient with a contagious disease will be housed in a negative pressure isolation room, which maintains a flow of air into the room to keep the infection from spreading to other patients and healthcare workers.

In industrial settings, positive pressure (known as “inflating the building”) is similarly used to keep particulate or gaseous contaminants out of a room, creating an air barrier between the outside and the inside. If you walk into a positively pressurized environment and open the door from outside, you will feel the “whoosh” of air escaping due to the higher pressure of the air inside the room. This is the desired effect when you are trying to protect the contents of the room from dirty outdoor air conditions, from dust or fumes generated by an adjacent production process, or even from excess humidity that might seep in through walls or other openings. Offices, labs, and electrical and server rooms in industrial facilities are especially prone to dust infiltration that can create unpleasant working conditions while causing problems with critical equipment, especially electronics.

Conversely, in a pharmaceutical facility where potent compounds are used, negative pressure may be applied—sometimes in conjunction with containment systems—to prevent the dust generated in a manufacturing space from cross-contaminating other areas of the plant.

Figure 2: A 16-cartridge dust collector pressurizes and ventilates a compressor room in a power generation plant in South America. Wall louvers allow for air exchange and are calibrated to maintain a specific pressure inside the facility. Courtesy: CamfilTo guard against cross-contamination and maintain desired air quality during either positive or negative pressurization, proper air filtration is a necessary component of the process. High-efficiency HVAC filters (ASHRAE-grade or HEPA filters) are the most common solution, but cartridge-type industrial dust collectors can offer an effective and sometimes overlooked alternative for applications where dust loads are extremely heavy and filter life is prohibitively short.

Pressurizing with dust collectors is applicable to many industries, including cement and lime production, metal and coal mining, pharmaceutical processing, grain processing, or potentially anywhere that high volumes of dust are generated. Areas that are most commonly protected through pressurization include:

  • Control rooms
  • Clean rooms
  • Compressor rooms
  • Offices
  • Quality control labs
  • Substations
  • Electrical equipment and motor control center (MCC) rooms
  • Server rooms  

Deciding when to pressurize

Figure 3: Dust collection system is used to pressurize a control room at a gold mine. The collector is connected to a ducting system in a very similar configuration as if an air conditioning unit performed the same function. Courtesy: Camfil APCHow does a plant engineer decide whether pressurization is a good choice? The decision can’t be based solely on the volume of dust to be controlled, because other factors come into play such as the type of dust, conditions inside and outside the space, and what (or whom) you are trying to protect.

If there is nothing much of value inside the space, pressurization may not be worth the expense. But if you are protecting electrical equipment that costs $100,000 from damage or from creating a safety hazard due to contact with dust, it will be worth investing in a $20,000 pressurizing system to protect that equipment. Similarly, if workers in an office area are exposed to unhealthy levels of dust or fumes, you will want to keep the area clean to protect occupants against the well-known health hazards associated with dirty indoor air and comply with OSHA regulations for exposure. Not only will you be in compliance and preserve their health, but morale and productivity will also be enhanced.

Climate considerations might also impact your cost analysis. In the tropics, if you inject large amounts of warm, moisture-laden air from outside to pressurize a building, the additional air conditioning load could be cost-prohibitive. However, in colder climates or during winter season, you can take advantage of the “free cooling” and use your pressurizing system for conditioning, saving substantially on air conditioning costs required to keep servers and electrical equipment from overheating.

Return on investment should typically be less than two years for pressurization to be cost-effective, and field experience shows that the payback is often much faster. Though as stated before, in many cases the main justification is to guarantee a certain air quality in a space to protect something or someone valuable. The technology is best applied to new construction, expansion, or renovation projects. Retrofitting of existing facilities, while possible, can be more costly and complex depending on the setup and location. 


<< First < Previous 1 2 Next > Last >>

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Your leaks start here: Take a disciplined approach with your hydraulic system; U.S. presence at Hannover Messe a rousing success
Hannover Messe 2016: Taking hold of the future - Partner Country status spotlights U.S. manufacturing; Honoring manufacturing excellence: The 2015 Product of the Year Winners
Inside IIoT: How technology, strategy can improve your operation; Dry media or web scrubber?; Six steps to design a PM program
Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Digital oilfields: Integrated HMI/SCADA systems enable smarter data acquisition; Real-world impact of simulation; Electric actuator technology prospers in production fields
Special report: U.S. natural gas; LNG transport technologies evolve to meet market demand; Understanding new methane regulations; Predictive maintenance for gas pipeline compressors
Warehouse winter comfort: The HTHV solution; Cooling with natural gas; Plastics industry booming
Managing automation upgrades, retrofits; Making technical, business sense; Ensuring network cyber security
Designing generator systems; Using online commissioning tools; Selective coordination best practices

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role that compressed air plays in manufacturing plants.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me