Predict to prevent

Even an hour of process downtime in an industrial manufacturing facility can cost hundreds of thousands of dollars. In a fragile economy, that can mean the difference between meeting and exceeding production goals, or falling well short. The question then becomes, what can be done to mitigate unscheduled downtime? The continuous, reliable operation of electric motors is valuable to most critica...


Even an hour of process downtime in an industrial manufacturing facility can cost hundreds of thousands of dollars. In a fragile economy, that can mean the difference between meeting and exceeding production goals, or falling well short. The question then becomes, what can be done to mitigate unscheduled downtime?

The continuous, reliable operation of electric motors is valuable to most critical manufacturing processes. That’s why a motor management system is a very valuable asset to industrial facilities management. These systems reside on the factory floor within control panels or intelligent motor control centers, and facilitate remote control, monitoring and protection of electrical motors and processes.

With the ability to predict what will happen to a motor, and by extension, an industrial process, motor management systems can become the single most important tool to mitigate industrial manufacturing downtime.

Four steps to prediction

The ability of a motor management system to predict what could happen to a motor is built around four critical features.

Advanced monitoring capabilities play a key role in a robust motor management system. A system should have the ability to accurately monitor current, voltage and power over a wide range. Armed with this data, a motor management system will be able to predict potential process downtime more accurately, thus allowing that downtime to be scheduled during non-critical time periods.

Data recording capabilities are essential for effective prediction. Faults and similar events throughout the facility’s automation system should be recorded, time-stamped and saved in non-volatile memory %%MDASSML%% all of which can be achieved by a robust motor management system. This information can be used for preventive maintenance tasks and to better predict potential unscheduled downtime for critical processes.

Having an open architecture and the ability to connect to SCADA and power management systems is critical to successful motor management. Why? Connection to SCADA systems will enhance predictive features of each system, while connection to a factory-wide power monitoring system will allow better energy management at the facility level. With energy costs continuing to escalate, that means motor management systems are a green alternative, helping to monitor and conserve energy while conforming to environmental standards.

Finally, motor management systems should offer a comprehensive battery of current, voltage and power protection, along with advanced warning features. Protection features offered by motor management systems will protect equipment investments while advanced warning features will help to predict potential unscheduled process downtime.

Flexible connectivity and control

Increasing the availability of critical processes is the mark of an effective motor management system. To optimize this availability, motor management systems should integrate seamlessly into an industrial facility’s automation systems and have the ability to communicate directly to SCADA systems and PLCs. Seamless integration also requires support of the major industrial communication protocols such as Ethernet, Modbus, CANopen, DeviceNet and PROFIBUS.

Motor management systems also need to be flexible enough to allow integration into intelligent motor control centers (iMCCs). Critical processes in the mining, oil/gas and water/wastewater applications are using iMCCs to control and manage electrical motors. Integration into an iMCC requires motor management systems to be very compact, able to withstand high operating temperatures and offer wide full-load current adjustment.

Easy commissioning, maintenance

Though a motor management system should be very flexible to minimize process downtime, it will lose its luster if commissioning, use and maintenance are very complex. This is why it is critical for motor management systems to be seamless to commission, easy to use and simple to maintain.

Intuitive PC-based software can simplify the motor management system commissioning stage. These advanced software packages are able to commission the entire solution a facility is implementing. Standard software will afford consistency and speed up commissioning.

Flexible connectivity with major industrial communication protocols (Ethernet, Modbus, CANopen, DeviceNet and PROFIBUS) can also simplify commissioning activities by centralizing those tasks to a single control station. Advanced communication protocols such as Ethernet make the use and maintenance of motor management systems easier than ever. Ethernet communication supports Web services, which could be used on a PC to run diagnostics, or to set up a system for monitoring. A simple Web browser can do the job.

Motor control systems can help predict a motor failure. Such predictions, if acted on, can reduce downtime by creating planned motor maintenance.

Author Information

Fabrice Meunier, Schneider Electric business development specialist, is pursuing a master’s degree at North Carolina State. His e-mail is .

Arc Flash University takes a deeper dive into NFPA 70E

The 2009 edition of NFPA 70E offers clear direction on arc flash issues. But the changes in the new standard also offers room for confusion.

To help clear up that confusion, Plant Engineering presented the second class in the 2009 Arc Flash University series on May 28. The second class, “A Deeper Dive into Changes in NFPA 70E” is now available at in our Webcast archive.

Greg Foust of GE presented the second class to more than 1,000 registrants, discussing how the changes in the NFPA 70E standard will affect plant operations. Foust noted the overall issues around 70E’s emphasis on arc flash safety and PPE use may overshadow some details on how 70E should be used within a plant environment.

“The Arc Flash study is always better than following the tables in 70E to determine the hazard risk category and the PPE to be used,” Foust noted in his presentation. “In fact, 70E requires that when a study has been done, the study is the “master” when it comes to exposed, energized work. The tables can only be used thereafter for work involving all covers securely attached and doors fastened closed.”

The 2009 Arc Flash University series features four quarterly reviews of NFPA 70E, and participants will receive CEU credits for successfully completing three of the four AFU tests. All AFU attendees will be eligible to receive Arc Flash university baseball caps.

To review the latest Arc Flash university presentation and to register for the August 27 Webcast, go to .

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Safer human-robot collaboration; 2017 Maintenance Survey; Digital Training; Converting your lighting system
IIoT grows up; Six ways to lower IIoT costs; Six mobile safety strategies; 2017 Salary Survey
2016 Top Plant; 2016 Best Practices on manufacturing progress, efficiency, safety
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Future of oil and gas projects; Reservoir models; The importance of SCADA to oil and gas
Big Data and bigger solutions; Tablet technologies; SCADA developments
Automation modernization; Predictive analytics enable open connectivity; System integration success; Automation turns home brewer into brew house
Commissioning electrical systems; Designing emergency and standby generator systems; Paralleling switchgear generator systems
Natural gas for tomorrow's fleets; Colleges and universities moving to CHP; Power and steam and frozen foods

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Motion control advances and solutions can help with machine control, automated control on assembly lines, integration of robotics and automation, and machine safety.
Compressed air plays a vital role in most manufacturing plants, and availability of compressed air is crucial to a wide variety of operations.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
click me