Power analytics increases resilience, reduces costs

As organizations become more reliant on electrical power – and the cost of downtime becomes more menacing to their bottom lines – they are scrambling to find ways to maximize resilience and minimize energy costs.

07/15/2008


As organizations become more reliant on electrical power %%MDASSML%% and the cost of downtime becomes more menacing to their bottom lines %%MDASSML%% they are scrambling to find ways to maximize resilience and minimize energy costs. But these factors are working against them:

  • The national power systems infrastructure is overtaxed

  • Internal power systems designs are not well-documented

  • New equipment tends to be designed for output instead of energy efficiency

  • Utility costs are going through the roof.

    • Recently, a technology called “power analytics” has been helping organizations to optimally design, diagnose and manage their power infrastructure. The technology protects operations, increases energy efficiency and predicts when and where power system anomalies could occur in real time.

      Power analytics defined

      Power analytics is similar to “business analytics,” which is the technology that provides statistical analysis of credit scores. As the credit score relies on real-time measurements such as income, outstanding debt and payment history to reflect personal financial health, power analytics determines the operational health of a facility’s electrical power infrastructure based on the answers to questions that include:

      • How stable is my power infrastructure?

      • How much gross capacity do I have?

      • How much is my capacity loaded?

      • Historically, is my infrastructure reliable?

      • Why have we experienced overvoltage and undervoltage problems the past 30 minutes?

      • How would my power systems integrity be affected if I lost utility power?

      • How does the installation of new equipment impact system integrity?

      • How much capacity would I gain if I modernized my facility?

        • How this technology works

          When an electrical power system is designed, it is routinely created by a power systems engineer using modeling programs. Available from a number of specialized CAD vendors, these programs allow engineers to not only design complex electrical power systems, but to simulate how they will perform in live operation. They can simulate and help resolve issues such as arc flash, power flow, power quality, protective device coordination and dozens of other power considerations. This process enables engineers to produce a model that is “perfect on paper.”

          Once the design is completed and accepted, electrical system engineers have a decision to make. Historically, the CAD model is printed out as an electrical one-line diagram and “thrown over the wall” to a construction firm who, at the completion of the project, archives the drawings. But with power analytics, the CAD model remains in electronic form and is redeployed in an on-line mode. As a result, all of the components and their specifications “go live,” to provide a benchmark for how the system should be performing an its ideal state, and what variations may exist between the “ideal” and “actual” states.

          Impact on energy management, costs

          How can the information divulged by a power analytics system help organizations lower their energy costs? If you are trying to increase the energy efficiency of a plant, the power analytics system will tell you how efficiently each piece of equipment is performing, what can be done to optimize its performance and how to accomplish needed modifications without taking the entire system offline.

          Once a facility is optimized for energy efficiency, power analytics can report accurate, real-time energy usage. These data can be compared to the “as-designed” energy usage to give insight into system unbalances, capacity restraints or overloads. The results of virtualization and other energy efficiency measures can be followed and assimilated. The system can then suggest scenarios for improved energy use based on its predictive diagnostics ability and by “what-if” simulation. At the current energy costs (based on $0.089/kWh), a nominal realized annual savings of 10% for even a relatively small facility is significant: greater than $100,000.


          <table ID = 'id3003149-0-table' CELLSPACING = '0' CELLPADDING = '2' WIDTH = '100%' BORDER = '0'><tbody ID = 'id3038168-0-tbody'><tr ID = 'id3001716-0-tr'><td ID = 'id3001864-0-td' CLASS = 'table' STYLE = 'background-color: #EEEEEE'> Author Information </td></tr><tr ID = 'id3001860-3-tr'><td ID = 'id3001582-3-td' CLASS = 'table'> Mark A. Ascolese is chairman and CEO of </td></tr></tbody></table>

          The benefits of power analytics

          Benefits of a power analytics system include:

          The design model codifies an immense amount of very detailed information about the power infrastructure at a component-level, which contributes to a global view of the entire interrelated power ecosystem

          Variations anywhere in the infrastructure are instantaneously isolated and assessed for the “ripple effect” they theoretically pose to the entire system, and potential threats and their resolution are immediately calculated and presented

          The original design model can be easily amended as new equipment, systems and processes are introduced, giving users an always-current understanding of what is happening throughout their facility and their overall system health

          When unpredictable, non-avertable problems arise, the power analytics system takes control over notifications and alarms to provide detailed forensics on the actual sequence of events, intelligent alarm management and expert resolution %%MDASSML%% based on its global understanding of the entire power network.



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
2016 Product of the Year; Diagnose bearing failures; Asset performance management; Testing dust collector performance measures
Safety for 18 years, warehouse maintenance tips, Ethernet and the IIoT, GAMS 2016 recap
2016 Engineering Leaders Under 40; Future vision: Where is manufacturing headed?; Electrical distribution, redefined
SCADA at the junction, Managing risk through maintenance, Moving at the speed of data
Safety at every angle, Big Data's impact on operations, bridging the skills gap
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Applying network redundancy; Overcoming loop tuning challenges; PID control and networks
Driving motor efficiency; Preventing arc flash in mission critical facilities; Integrating alternative power and existing electrical systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role of plant safety and offers advice on best practices.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me