PLC-based vs. proprietary robotic controls

Open robotic control: For facilities that already use programmable logic controllers (PLCs) for other machine control functions, integrating robotic control into a PLC may be a wiser choice than relying on the controller provided by the robot manufacturer. Here’s what to consider.


A common control system for the robot and nearby control functions enables easier upgrades and maintenance, and reduces total cost of ownership. Here an Alvey robotic palletizing cell from Intelligrated operates with nearby conveyors. Courtesy: IntelligraAs more manufacturing facilities and distribution centers discover the benefits of robotic material handling solutions, they must decide how best to control the robot. While robot original equipment manufacturers (OEMs) offer their own tightly integrated controller, recent developments have enabled control by a programmable logic controller, or PLC. For facilities that already use PLC-based controls for other machine control functions, integrating robotic control into a PLC may be a wiser choice than relying on an OEM proprietary controller.

Speaking robot just got easier

Most engineers and technicians already understand PLCs and therefore can read and troubleshoot a PLC-based robot system without learning a proprietary OEM control language. While operators still need to understand how robots operate, leveraging existing PLC knowledge greatly reduces training time required to manage, maintain, and operate robotic systems. PLC controls further streamline operations with:

  • Common programming controls (software, cables, etc.)
  • Common software interfaces
  • Common program backup/restore methodology
  • Common program documentation. 

Simplified robot control interface

Robotic material handling solutions are often complex systems that integrate robotic equipment with nonrobotic systems. Common system components can include infeed and discharge conveyors, pallet dispensers, and transfer cars. Since PLCs typically control nonrobotic system components, robotic controllers must interface to the system controller, handshaking data, and interlocks to achieve desired functionality. Depending on the complexity of the application, interfacing different control modules can pose quite a challenge.

However, consolidating control over robots and other system components into the same PLC eliminates the interface point between separate control systems, greatly reducing system complexity. For example, one controller can handle multiple processes and equipment with the same hardware and software platform, reducing integration and development costs for OEMs and lifecycle costs for end users.

Shared control architecture

PLC-based robotic controllers use the same control architecture as other facility machinery, enabling one point of control over traditional automation equipment and robots. Robot controls use the same drawing nomenclature (wire number, draw numbering, etc.) as other hardware in the same control panel, reducing control system design complexity. Additional benefits of common controls architecture include:

  • Simplified troubleshooting and maintenance
  • Reduced panel footprint
  • Simplified training
  • Common spare parts
  • Common part numbering scheme.

Easier robotic communications

The bulk of proprietary OEM controllers’ input/output (I/O) communications involve interfacing the robotic controller with the PLC. However, PLC-based robotic controls eliminate this extra communication and instead directly interface with the I/O of the robot, an operation as simple as any other I/O communication in the control system. In addition to simplifying I/O communication, PLC-based robotic controls enable operators to use hardware, I/O, and communications protocols available to the PLC, rather than those from the OEM controller. Since PLC-based robotic controls support a wider range of I/O hardware and communications protocols than OEM controllers do, they more easily accommodate and integrate with more system control applications.

A common interface

With PLC-based robotic controls, the human machine interface (HMI) is consistent through the system and the teach pendent is no longer the primary interface with the robot controller. The alarm system, fault recording, data monitoring, and all other functions available to the HMI now directly interface with the robot controller. Unique faults and custom operations also can be added and changed directly to the robot controller. The HMI interface allows for a much greater application-specific focus and a considerably more agile structure with simplified operator training.

Lower maintenance, upgrade costs

The Alvey 950 series hybrid palletizer from Intelligrated comes standard with an integrated control system that allows the palletizer and its robotic arms to operate from one PLC. Courtesy: IntelligratedManufacturing facilities integrate many types of machinery and typically favor PLC-based controls for equipment such as fillers, packers, palletizers, wrappers, and conveyors. If each OEM supplies a unique control scheme, the integrated system may be functional but a nightmare to maintain and upgrade. For this reason, most manufacturing facility requests for proposal (RFPs) place boundaries on the controllers and hardware OEMs can use.

A common control system enables easier upgrades and maintenance, and reduces total cost of ownership. In this respect, integrating the robot controller with the PLC-based control system saves end users additional costs of a unique robotic control design, resulting in a lower total cost of ownership.

More compatibility, robot choices

Due to the specialized nature of OEM robot controllers and related training requirements, many operations that already use industrial robots prefer to stick with the facility’s incumbent robot brand. This often deters companies from selecting the best-fit robot model due to unwillingness to support multiple robot brands or interface different OEM controls. Since PLC-based robotic controllers can be common across multiple brands, end users are no longer “locked in” to their initial robot brand when selecting future solutions.

PLC-based robotic controls introduce a new set of decisions for robotic integrators. Despite certain advantages, system integrators and others can see that PLC-based controls are not always the best choice. Robot-intensive environments, such as the automotive industry, may be unlikely to switch from OEM controllers due to a large install base and highly specialized application requirements. Furthermore, some robot OEMs do not offer a way of provisioning a PLC-based controller.

When making a robotic controller decision, operations must consider availability, functionality, and cost. In facilities with a sizeable installed base of PLC machine controls for the robot to interface with, the technical staff’s familiarity with PLC controls over a unique OEM controller can significantly affect operational and support costs. A reputable certified robotic integrator will work to provide a best-fit final solution, whether PLC- or OEM-based.

- Matt Wicks, vice president, systems engineering, manufacturing systems, at Intelligrated has more than 18 years of experience in the material handling industry with expertise in the areas of controls and software integration for high-volume facilities as well as unique build-to-order fulfillment solutions. He holds a bachelor of science degree in electrical engineering from the University of Missouri - Rolla (Missouri S&T) and currently serves on the university's corporate development council. Wicks is a registered Professional Engineer in the state of Missouri and currently resides in St. Charles, Mo.; edited by Mark T. Hoske, content manager, CFE Media, Control Engineering and Plant Engineering, mhoske(at)


Key concepts

  • PLC-based robotic controls can lower overall cost of ownership, unifying control.
  • Programming, training, and communications can be easier.
  • Some robot manufacturers do not allow PLC control.

Consider this

  • How could one less control environment benefit robotic workcell integration?


Don , , 05/13/14 11:20 AM:

The only thing missing here is the distinction between a PLC and a PAC needs to be made. For robot control (motion control) only PACs have that capability, not PLCs.
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.