Past PID: Adaptive control is versatile, fast, accurate, report says

Microprocessors and advanced computing platforms have catalyzed the shift to adaptive controllers from proportional-integral-derivative (PID) controllers in process industries. Frost & Sullivan says adaptive control is gaining ground with improved performance in mechanical and nonmechanical systems. Links include....


Palo Alto, CA – The advent of microprocessors and advanced computing platforms has catalyzed the shift to adaptive controllers from proportional-integral-derivative (PID) controllers in process industries. Continuous Adaptive Control – Technology Developments is a new analysis from Frost & Sullivan that reports adaptive control is being increasingly used because of its ability to improve performance in mechanical and nonmechanical systems.
In a Control Engineering article, “Techniques for Adaptive Control,” Vance VanDoren, consulting editor, says, “These latest control methodologies offer a means to revolutionize plant and process efficiency, response time, and profitability by allowing a process to be regulated by a form of rule-based artificial intelligence, without human intervention.” Also read “

Adaptive Controllers Work Smarter not Harder

” from Control Engineering .
Frost & Sullivan says adaptive controllers evolved from a solution for low-bandwidth applications to serve higher-bandwidth applications such as robots, spacecraft, and complex machining processes. Systems involving material, money, and supply and demand successfully incorporate adaptive controls. Missile control and guidance, fluid drive, industrial process control, power drag, firepower control system, ship navigation, and other nonlinear mechatronic systems now depend on this technology.
According to Frost & Sullivan research analyst S. Menaka, “While designing such complex and highly cognitive systems, developers need to be conscious of the time sensitivity of input and output data. Scientists will also have to consider other factors such as machine-human interface, ability to create cognitive solutions in a stipulated time, real-time performance control of the system, architecture independence, data normalization, and other such related factors.”
Due to time delays in operation or installation in systems with unknown dynamics, controllers were not traditionally used in mechanical systems. Following the advent of PID self-tuners, adaptive controllers became popular among commercial goods manufacturers and industry, Menaka says.
Offline training is imperative and scientists are compelled to consider the systems complexities. It was necessary that there be a trade-off among the error occurrences, correction identification, and steady performance of the system. Next-generation adaptive controllers use the model changes and the process output to compute the integrated square error (ISE) for each of three process parameters. After analysis of low, middle, and higher combinations of the parameters, 27 models can be devised, says Menaka.
“Through continued iterations, each model is normalized to a total ISE and the best value computed for each of the parameters is used in the next iteration as the middle value,” adds Menaka. “Thus, the model will undergo interpolation with re-centering of the parametric values to ultimately reach an optimum corrective model. As a high-end application, the control algorithm may also be embedded into an enterprise resource planning system. Eventually, scientists could develop a hybrid system comprising interacting subsystems.”
Future research will focus on other techniques, in addition to data analysis, inferential estimation, integration of neural network-based technologies into existing systems, and predictive control. There is a focus on developing new modeling methodologies; existing systems are under observation to integrate them with these. Emerging as an embedded technology, adaptive control will control higher-level functions. The control algorithm enhances the safety, economy, and reliability of the system and is responsible for its success or failure.
Continuous Adaptive Control– Technology Developments, part of the

Technical Insights subscription

, provides analysis of elements involved in the concept, PID controller, and tool path optimization software. It includes techniques of adaptive control such as model reference adaptive control, model free adaptive control, auto-tuning and self-tuning controllers, applications in domains, and trends. Technical Insights, an international technology analysis business, produces news alerts, newsletters, and research services.

Control Engineering News Desk
Register here and scroll down to select your choice of eNewsletters free .

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
A cool solution: Collaboration, chemistry leads to foundry coat product development; See the 2015 Product of the Year Finalists
Raising the standard: What's new with NFPA 70E; A global view of manufacturing; Maintenance data; Fit bearings properly
Sister act: Building on their father's legacy, a new generation moves Bales Metal Surface Solutions forward; Meet the 2015 Engineering Leaders Under 40
Cyber security cost-efficient for industrial control systems; Extracting full value from operational data; Managing cyber security risks
Drilling for Big Data: Managing the flow of information; Big data drilldown series: Challenge and opportunity; OT to IT: Creating a circle of improvement; Industry loses best workers, again
Pipeline vulnerabilities? Securing hydrocarbon transit; Predictive analytics hit the mainstream; Dirty pipelines decrease flow, production—pig your line; Ensuring pipeline physical and cyber security
Upgrading secondary control systems; Keeping enclosures conditioned; Diagnostics increase equipment uptime; Mechatronics simplifies machine design
Designing positive-energy buildings; Ensuring power quality; Complying with NFPA 110; Minimizing arc flash hazards
Building high availability into industrial computers; Of key metrics and myth busting; The truth about five common VFD myths

Annual Salary Survey

After almost a decade of uncertainty, the confidence of plant floor managers is soaring. Even with a number of challenges and while implementing new technologies, there is a renewed sense of optimism among plant managers about their business and their future.

The respondents to the 2014 Plant Engineering Salary Survey come from throughout the U.S. and serve a variety of industries, but they are uniform in their optimism about manufacturing. This year’s survey found 79% consider manufacturing a secure career. That’s up from 75% in 2013 and significantly higher than the 63% figure when Plant Engineering first started asking that question a decade ago.

Read more: 2014 Salary Survey: Confidence rises amid the challenges

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.