Optimizing Pump Energy Use

Given that the bulk of electricity generated in the U.S. comes from burning fossil fuels, electric power consumption of any kind causes emissions of greenhouse gasses (GHGs). Wastewater facilities use electricity in all parts of the process, including offices, but the largest consumers are electric motor-driven pumps.

07/01/2008


Given that the bulk of electricity generated in the U.S. comes from burning fossil fuels, electric power consumption of any kind causes emissions of greenhouse gasses (GHGs). Wastewater facilities use electricity in all parts of the process, including offices, but the largest consumers are electric motor-driven pumps.

Wastewater pumps housed in lift stations and elsewhere in treatment facilities require substantial amounts of energy to operate. Since water is intrinsically heavy, pumping it uphill or against a pressure gradient consumes large amounts of energy.

For instance, the Inland Empire Utilities Agency operates a moderate size, 8.5 million gallons per day (MGD) wastewater treatment plant in Ontario, CA. The facility's total combined 1195 horsepower for all pumps as of 2001 consumed approximately 4,750,000 kWh of electricity annually. Using the U.S. Department of Energy's (DOE) figure of 1.345 lbs of CO 2 emitted per kWh, operation of the pumps in this single facility for one year emitted approximately 3,200 tons of CO 2 , which is equivalent to traveling about 7 million miles in a vehicle at 20 miles per gallon.

A pump's primary job is lifting and moving water, and most of the energy consumed is used to do that. But a pump also wastes considerable amounts of energy to overcome friction and vibrational forces within the motor and pump mechanism, as well as the turbulence and friction as water passes through the pump and pipelines.

The wire-to-water efficiency of a pump describes the amount of energy that a pump uses specifically for moving water, versus energy used wastefully to overcome friction, vibration, and turbulence. As efficiency increases, more of the energy applied to a pump is transferred into moving water. Therefore, by increasing pump efficiency, doing the same amount of work takes less energy, reducing GHG emissions and energy costs.

As an example, the wastewater treatment plant in Ontario, CA, mentioned above was part of a joint study with the California Energy Commission and the DOE. By conducting an energy efficiency study of the plant's 19 water pumps, the plant's operators found that only three of the most frequently maintained pumps had good wire-to-water efficiencies, approaching 70%. All others operated between 47% and 60% efficiency.

After replacing worn parts, including eddy current clutches and old motors, the plant reduced its energy consumption by about 10%, or 475,000 kWh per year, saving enough money on electricity to repay the repair cost in two years and reduce annual GHG emissions by about 320 tons.

This example is not unique. DOE studies indicate that increasing pump efficiency can realistically save up to 20% of the total energy consumed during wastewater pumping. Several case studies also support this claim for water pump stations in general, including an efficiency study and retrofit at Austin Energy in Austin, TX, where strategic upgrades annually saved 43,000 tons of CO2 emissions and $1.2 million in energy costs for pumping cooling water. Another study and upgrade project at Boise Paper in Wallula, WA, saved an estimated 330 tons of CO2 emissions and $17,500 in energy costs annually.

Why do pumps lose efficiency?

The table lists typical causes of efficiency losses that generally happen in various combinations. They can be split into two categories: mechanical degradation and ineffective operation.

Mechanical degradation, such as declining wear rings, loss of impeller clearance, or enhanced wear from buildups, requires ongoing pump and facility maintenance to correct and ensure maximum efficiency. Perhaps most critical to reducing the effects of wear is maintaining the internal wearing ring clearance and the smoothness of impeller and casing waterways. Sustaining the highest efficiency means maintaining pumps and all system components in virtually new condition.

Ineffective pump operation may be a result of pumps that are oversized for the job, selected and applied improperly, operated in a throttled condition to compensate for being oversized, careless management of system flows and pressure, pumping systems with bypass flow, use of multiple pumps systems where excess pressure is generated, using high system pressure instead of a booster pump, or changes from initial design conditions, such as cross connections, parallel main lines, or changes in pipe diameter or material.

Evaluation requires data

Solving pump efficiency problems requires a two-pronged approach. The first relates to physical changes, or pump selection and maintenance issues. This involves choosing the right type and size of pump for every application and keeping it in tip-top running condition. The second involves more subtle control and monitoring issues.

Pump maintenance has been treated extensively elsewhere, so we will concentrate on basic selection, control, and monitoring issues. When beginning an efficiency evaluation program, one of the most daunting issues is the simple question, where to start? When faced with the complex network of pumps, lift stations, pipelines, and other collection and treatment facilities associated with wastewater treatment answering that question becomes a key issue.

It is common in wastewater facilities for several individual pumps or pump stations to operate with high or relatively high efficiency, while the remainder—sometimes only a handful—operate at low or extremely low efficiency. This results in excess power consumption for the facility as a whole, and raises the problem of how to identify the problematic components. Without performance data for each pump station or pump in your facility, it is nearly impossible to make cost-effective or time-effective decisions regarding maintenance or replacement.

Evaluating the performance of a given pump requires extensive data history, including flow rates, water volumes, electrical consumption, running hours, and other variables that can help identify efficiency problem areas. Without such information, making future selections of the most efficient pumps and pump configurations is not possible.

Filling in that data and monitoring the system on an ongoing basis requires a basic package of instrumentation common to process industries. For example, parameters such as flow rate and energy consumption, if monitored consistently, provide the data needed to make basic efficiency calculations and identify problem equipment. Over time, data collected by ongoing pump and pump station monitoring could be used select and configure replacement hardware.

Fortunately, advances in flow and efficiency monitoring technology can significantly streamline the monitoring process. For instance, pump station manager packages are now available that include many built-in features that log level, pressure, energy usage, flow rates, and system efficiency data. These systems should interface with larger distributed control and data acquisition systems to support comprehensive reporting as well as real-time data, empowering operations staff to optimize the network on a short-term and long-term basis. Well-configured systems can also include algorithms that select and use the most efficient pump based on operational levels.

While monitoring instrumentation and pump station managers require up-front investment, life-cycle studies have shown that for wastewater pumps and lift stations, equipment capital cost for efficiency improvements are quickly offset by energy savings. For example, the “Causes of centrifugal pump efficiency losses” graphic shows that increasing the efficiency of a single, 100 hp pump by 20% can result in an annual savings of 145,000 kWh of electricity with a cost of $11,600, and 98 tons of CO 2 equivalent GHG emissions. These numbers speak for themselves: investing in pump efficiency reduces GHG emissions and saves money. ce

Source : Control Engineering with information from McNally Institute and RSE Consulting.

• Cavitation

• Degradation of wear rings

• Water hammer

• Operating at critical speed

• Pressure surges

• Increased internal recirculation

• Foreign objects

• Loss of proper impeller clearance

• Impeller imbalance or wear

• Eroded or corroded internal pump passages

• Bent shaft

• Over-lubricated or over-loaded bearings

• Harmonic vibration

• Buildups that may rub along mechanical seals

• Clogged pipelines or pumps

• Impeller and casing wear causing increased clearances

• Loose hardware

• Over-tightened packing or improper seal installation

• Use of vortex pumps

• Solids rubbing against components, especially the seal

• Shape of the impeller

• Operating too far from the pump's best efficiency point

• Improperly managed hourly, daily, or monthly increases/reductions in flow/pressure


6 cents per kWh

8 cents per kWh

10 cents per kWh

12 cents per kWh

Source: Control Engineering with data from U.S. Department of Energy and RSE Consulting.

100 HP Pump

kWh required

726,000

726,000

726,000

726,000

Electricity cost

$43,600

$58,000

$72,600

$87,120

Tons GHG emissions

488

488

488

488

100 hp pump with 20% increase in efficiency

kWh

580,800

580,800

580,800

580,800

Electricity cost

$34,880

$46,400

$58,080

$69,696

Tons GHG emissions

391

391

391

391

Savings with 20% percent efficiency increase

kWh

145,200

145,200

145,200

145,200

Electricity cost

$8,720

$11,600

$14,520

$17,424

Tons GHG emissions

98

98

98

98


Author Information

Robert Eckard is principal, RSE Consulting. Reach him at rseconsulting@gmail.com .




No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Leaders Under 40 program features outstanding young people who are making a difference in manufacturing. View the 2013 Leaders here.
The new control room: It's got all the bells and whistles - and alarms, too; Remote maintenance; Specifying VFDs
2014 forecast issue: To serve and to manufacture - Veterans will bring skill and discipline to the plant floor if we can find a way to get them there.
2013 Top Plant: Lincoln Electric Company, Cleveland, Ohio
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Bring focus to PLC programming: 5 things to avoid in putting your system together; Managing the DCS upgrade; PLM upgrade: a step-by-step approach
Balancing the bagging triangle; PID tuning improves process efficiency; Standardizing control room HMIs
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.