Operating NEMA Premium motors above rated load cuts efficiency

The operating load of any motor depends on a number of factors and it can have a major impact on its efficiency

02/12/2014


The operating load of any motor depends on a number of factors. As the chart shows, it also affects motor efficiency. Data courtesy: Baldor Electric Co.Recently some motor manufacturers have begun to mark their motors with service factors (SFs) of 1.25 rather than the usual 1.15 number used for years. Although this may indicate one is receiving a more robust motor, the actual torque capability of the motor is not enhanced.

Operating at SF, the motor is also well past its peak efficiency and power factor (PF) peak and will use more energy for the work produced, and may experience reduced winding, bearing, and grease life.

Most motors used in North America are marked with a SF, which is defined by the National Electrical Manufacturers Association in MG 1-2011 as follows:

1.42 SF—ac motors: The SF of an AC motor is a multiplier which, when applied to the rated horsepower, indicates a permissible horsepower loading which may be carried under the conditions specified for the service factor (see Section 14.37: Application of alternating-current motors with service factors).

Section 14.37—Application of alternating-current motors with SFs:

When a motor is operated at any SF greater than 1, it may have efficiency, power factor, and speed different from those at rated load, but the locked-rotor torque and current and breakdown torque will remain unchanged.

A motor operating continuously at any SF greater than 1 will have a reduced life expectancy compared to operating at its rated nameplate horsepower. Insulation life and bearing life are reduced by the SF load.

Reduced winding, bearing, and grease life

Operation of a motor continuously above rated load raises the temperature rise of the motor. As a rule of thumb, for every 10 C hotter the motor operates, its insulation life is cut in half. If we look at a 100 hp NEMA Premium efficient TEFC motor, it has a temp rise of 60 C at rated load and 76 C at 1.15 SF, a 16 C difference. This means that the insulation life is cut by 250% over the motor operated at rated load.

The higher temperature operation also takes its toll on bearing and grease life. At rated load, the 100 hp motor would have a grease life of 5000 hours. When it is operated at 1.25 SF, the grease life is shortened to 1750 hours-a 285% reduction in grease life.

Operation above rated load reduces efficiency

The 100 hp motor discussed above has a nominal efficiency of 95.4% and a power factor of 82.6%. Operating this motor at a 1.25 SF reduces efficiency to 94.9% and PF to 87.4%. At rated load and operating continuously at $0.075/kWh, this same 100 hp motor uses $51,375 in electricity annually (685,000 kWh). When it is operated at a 1.25 SF and loaded to 125 hp, it uses $64,558 annually (852,680 kWh), an increase of $13,183.

Ideally the maximum efficiency for an ac induction motor is at about 80% of its rating, not above full load. Some process industries have adopted the 80% point as a best practice. A 150 hp motor operated at 80% load uses $61,138 and 815,173 kWh.

Some compressor companies also size motors to operate at SF, calling a motor that operates at rated load "oversized." Users should request a right-sized motor for best efficiency. The additional purchase cost of the larger motor will be easily offset by the lifecycle costs of a smaller motor operating in its SF. The purchase price of a motor is only about 2% of its lifecycle cost.

John Malinowski is general product manager and Jack Zedek is senior design engineer for Baldor Electric Company.



MICHAEL , Non-US/Not Applicable, Australia, 02/20/14 08:06 AM:

Excellent article on motor services factors. Need to work below SF rating to maximise service life and avoid down time
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.