Open-source radio technology: Now available for process engineering

Following the technological progress of fieldbus in process automation, the next development step in field communication is that of solutions involving radio technology. Can radio technology be used on an “across the board” basis? Based on open standards, the HART Communication Foundation provides the answer with WirelessHART.

09/15/2008


Following the technological progress of fieldbus in process automation, the next development step in field communication is that of solutions involving radio technology. Can radio technology be used on an “across the board” basis? Based on open standards, the HART Communication Foundation provides the answer with Wireless HART.

WirelessHART now available

Wireless HART is built on the widely-used HART standard, as evidenced by 20 million installed HART-compatible field devices. HART was originally conceived as an extension of the common 4-20 mA current loop, in order to provide field devices with greater functionality.

The next step in the HART evolution has arrived. The Wireless HART standard, released in September 2007, is based directly on the HART protocol, but is free of the physical transfer path. HART uses a 2.4 GHz band %%MDASSML%% license-free and used throughout the world %%MDASSML%% as a transfer medium for several radio technologies, including wireless local area network (WLAN), Bluetooth and ZigBee. Thus it is possible to use Wireless HART without approval.

Evolution of a technology

For the physical layer, Wireless HART uses radio modules in accordance with IEEE 802.15.4. Radio systems are already established on the basis of this standard, for example ZigBee and WLAN. The advantage is that the hardware is already available. However, to simply refer to Wireless HART as WLAN is too much of a simplification.

While only point-to-point connections can be constructed with conventional WLAN, Wireless HART uses a flat mesh network, where all radio stations form a network in which every participating station serves simultaneously as a signal source and a repeater. The original transmitter sends a message to its nearest neighbor, which passes this message on until the message reaches the base station and the actual receiver. In this way, the network covers a large area.

In addition, alternative routes are set up in the initialization phase. In the event that the message cannot be transmitted on a particular path, due to an obstacle or a defective receiver, for example, the message is automatically passed on to an alternative route. In addition to the coverage of larger areas, the reliability of transmission is increased.

The network manager functions as the central component of the network. The network is organized centrally by the network manager on start up. It constructs the network, establishes the organization of the communication and determines the redundant paths. The network manager also detects newly arriving stations and integrates them into the existing network during actual operation, so that problem-free expansion is possible. During operation, the network manager monitors all the important functions of the network and all stations and applies corrections in the event of faults.

The coordination of communication in the flat mesh network is carried out via the Time Division Multiple Access (TDMA) method, which synchronizes the radio stations very accurately in the 10 millisecond timing cycle. Thus the radio stations record the communication to an accuracy of 10 milliseconds. This reduces the lead and lag times during which a station must be active.

In order to avoid sources of interference and interference with other radio stations in the 2.4 GHz band, Wireless HART uses a method called Frequency Hopping Spread Spectrum (FHSS). Here, all 16 frequencies defined in IEEE 802 are used in parallel. Already occupied channels are entered in a “blacklist,” and no longer used for communication. The combination of the exact time synchronization in the 10 millisecond cycle by means of TDMA and the use of all 16 channels of IEEE 802.15.4 by FHSS enable the overall network to achieve 1,600 communications per second.

The safety requirements of the plant operator must not be neglected and this is provided for by coding the communication with a 128 bit code. In this way, the monitoring and falsification of communication and of the usable data is excluded.

Wireless HART is the symbiosis between the much-used and proven HART, and the radio technology already established in both the private and public sectors. In addition to the well-known HART application for device parameterization, HART has already been widely used for:

  • Monitoring of instrument and environmental values

  • Asset management and optimization

  • Preventive maintenance

  • Performance monitoring

  • Energy management.

    • The requirements of these applications in terms of availability, transmission paths and speeds are well matched by the performance capability achievable by radio technology. And the Wireless HART concept also offers a seamless integration in the existing infrastructure with simultaneous openness with respect to new structures.

      Radio technology enables better use of existing applications in process automation and the achievement of new, cost-effective applications that were not previously possible. Wireless HART provides the necessary step from proprietary solutions to an overall standard in process technology, which enables the use of radio technology without system breakdown. Wireless HART will open up new possibilities to improve quality and plant monitoring, and optimize plants and processes. It is a worthwhile contribution to the economic operation of process plants.



      <table ID = 'id3003183-0-table' CELLSPACING = '0' CELLPADDING = '2' WIDTH = '100%' BORDER = '0'><tbody ID = 'id3001513-0-tbody'><tr ID = 'id3001870-0-tr'><td ID = 'id3008825-0-td' CLASS = 'table' STYLE = 'background-color: #EEEEEE'> Author Information </td></tr><tr ID = 'id3002695-3-tr'><td ID = 'id3008831-3-td' CLASS = 'table'> Gerrit Lohmann and Robert Schosker are product managers at </td></tr></tbody></table>


No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
2016 Product of the Year; Diagnose bearing failures; Asset performance management; Testing dust collector performance measures
Safety for 18 years, warehouse maintenance tips, Ethernet and the IIoT, GAMS 2016 recap
2016 Engineering Leaders Under 40; Future vision: Where is manufacturing headed?; Electrical distribution, redefined
SCADA at the junction, Managing risk through maintenance, Moving at the speed of data
Safety at every angle, Big Data's impact on operations, bridging the skills gap
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Applying network redundancy; Overcoming loop tuning challenges; PID control and networks
Driving motor efficiency; Preventing arc flash in mission critical facilities; Integrating alternative power and existing electrical systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role of plant safety and offers advice on best practices.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me