OPC: The next generation

Open connectivity through open standards began as a way for suppliers to achieve interoperability from factory floor devices to first-tier visualization applications. This is part of a Control Engineering December cover story.


Open connectivity through open standards, known today as OPC, began in 1995 as a way for suppliers to achieve interoperability from factory floor devices to first-tier visualization applications. Based on Microsoft technology, OPC was a vendor-driven initiative.

“Vendors were tired of developing software to communicate to hardware on the factory floor and having to maintain all the corresponding device drivers,” explained OPC Foundation’s Tom Burke. “The situation aligned with the concept of a printer: printer companies provided corresponding software to allow applications to connect and print documents to the desired printer. In the OPC world, we created a cottage industry in which software companies began to develop software that performed better than that created by the hardware vendors for their respective devices.”

This model continues with OPC Unified Architecture (OPC-UA). “OPCUA,” Burke went on, “separates the data from the services in such a way that the data, and the corresponding metadata behind the data, can now be generically discovered by applications connecting up to devices or other applications, providing timeless durability for systems built today and tomorrow.”

End-user demands for security and reliability continue to drive competitive vendors to work together to develop industry standards such as OPC-UA. Consortiums are also working with the OPC Foundation to develop companion specifications that will plug into OPC-UA for their respective information models. “OPC provides the infrastructure necessary for discovering, querying, subscribing, reading, and writing information of the various consortium modeling activities,” said Burke. “Their suppliers can develop complex applications simply, without needing intimate knowledge of the information models that exist today…or will exist tomorrow.”

A simple example of this concept is the USB (universal serial bus), which has helped shape the consumer electronics world. “Plug a device in to a laptop that supports USB,” Burke explained, “and suddenly you are able to do everything with that device. Industrial automation systems of tomorrow will support the same plug-and-play operation. Applications will be able to discover the devices that are being plugged in and configure, diagnose, and retrieve data from them.”


- Jeanine Katzel for Control Engineering, as part of the December 2010 Cover story: Integrating Disparate Control Systems.

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
A cool solution: Collaboration, chemistry leads to foundry coat product development; See the 2015 Product of the Year Finalists
Raising the standard: What's new with NFPA 70E; A global view of manufacturing; Maintenance data; Fit bearings properly
Sister act: Building on their father's legacy, a new generation moves Bales Metal Surface Solutions forward; Meet the 2015 Engineering Leaders Under 40
Cyber security cost-efficient for industrial control systems; Extracting full value from operational data; Managing cyber security risks
Drilling for Big Data: Managing the flow of information; Big data drilldown series: Challenge and opportunity; OT to IT: Creating a circle of improvement; Industry loses best workers, again
Pipeline vulnerabilities? Securing hydrocarbon transit; Predictive analytics hit the mainstream; Dirty pipelines decrease flow, production—pig your line; Ensuring pipeline physical and cyber security
Upgrading secondary control systems; Keeping enclosures conditioned; Diagnostics increase equipment uptime; Mechatronics simplifies machine design
Designing positive-energy buildings; Ensuring power quality; Complying with NFPA 110; Minimizing arc flash hazards
Building high availability into industrial computers; Of key metrics and myth busting; The truth about five common VFD myths

Annual Salary Survey

After almost a decade of uncertainty, the confidence of plant floor managers is soaring. Even with a number of challenges and while implementing new technologies, there is a renewed sense of optimism among plant managers about their business and their future.

The respondents to the 2014 Plant Engineering Salary Survey come from throughout the U.S. and serve a variety of industries, but they are uniform in their optimism about manufacturing. This year’s survey found 79% consider manufacturing a secure career. That’s up from 75% in 2013 and significantly higher than the 63% figure when Plant Engineering first started asking that question a decade ago.

Read more: 2014 Salary Survey: Confidence rises amid the challenges

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.