OEM Sustainability: Energy Efficiency for Machines

Purchase price of a machine accounts for just 2%-3% of its overall cost. Making intelligent choices when choosing motors can save up to 30% of energy consumption over the life of a machine.

12/25/2011


Industry and infrastructures consume more than 31% of available energy globally, with electrical motors alone representing more than 60% of this amount. With the increasing cost of electricity, intelligent consumption is a major concern for users and manufacturers.

(1) Using a motor with higher efficiency saves up to 10% energy. (2) A variable speed drive to control a motor saves up to 50%. (3) Using a servo drive and synchronous motor brings an additional 30% of savings, compared to standard drives in positioning a

When a decision is made to acquire a new machine, a manufacturer should consider the amount of energy that will be consumed by this machine during its lifecycle. Among expenses from the acquisition to dismantling of a machine, the purchase price accounts for 2% to 3% of the overall costs; the remainder is mainly its energy consumption. Smart solutions exist today to make the most of the available energy.

Machine engineering can be a key source of improvement in the energy consumption of machines. A machine is designed according to performance criteria and productivity. The engineer’s goal is to find the most efficient, economic, and competitive solutions—and motor selection is the result of these choices.

Generally, the selection is finalized when the mechanical part is defined and the power consumption is typically not taken into account; however, the growing cost of energy imposes new strategies. The choice of the motor should be the starting point of any reflection to reduce the power demand. Considering the mechanical requests, the motors that will equip the machine must answer several criteria.

First, motors allow machine continuous operation and provide the needed torque at the rated speed. This first consideration determines the motor size. The designer must also consider the motor torque requested to start the machine. Eventually, the motor may have to be oversized. Duty cycle is also a key point—any time the machine is started, there is a motor heating and it is essential not to exceed a limit which, at last, will end with the failure of the motor.

Generally speaking, a motor’s energy bill is motor cost x 100. Beyond the investment, the key point is to secure an efficient motor control. During a motor’s average 15-year life, 1% of the cost is capital investment, 2% is installation and maintenance, a

The ultimate decision is based on the environmental conditions and will take into account the temperature and the altitude at which the machine is due to operate. When all these evaluations are made, the selected motor is usually larger than necessary for continuous operation. As the motor is not running at its rated power, its efficiency is reduced. That inevitably leads to increased energy consumption. Due to motor and machine efficiency, part of this energy is simply wasted.

A closer examination of the machine, its modes of operation, and dynamic performances is the best way to choose the most suitable motor technology. Making intelligent choices when choosing motors can save up to 30% of energy consumption over the life of the machine.

- Ian Hitchins is vice president of OEM solutions, Schneider Electric. Edited by Mark T. Hoske, CFE Media, Control Engineering, www.controleng.com.

www.schneider-electric.com 

controleng.com/motors



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Leaders Under 40 program features outstanding young people who are making a difference in manufacturing. View the 2013 Leaders here.
The new control room: It's got all the bells and whistles - and alarms, too; Remote maintenance; Specifying VFDs
2014 forecast issue: To serve and to manufacture - Veterans will bring skill and discipline to the plant floor if we can find a way to get them there.
2013 Top Plant: Lincoln Electric Company, Cleveland, Ohio
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Bring focus to PLC programming: 5 things to avoid in putting your system together; Managing the DCS upgrade; PLM upgrade: a step-by-step approach
Balancing the bagging triangle; PID tuning improves process efficiency; Standardizing control room HMIs
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.