NFPA 92 defines design, testing of smoke control systems

03/21/2014


Figure 3: A proprietary smoke control system testing apparatus is shown.Criteria for smoke control systems

Chapter 4 also contains several design requirements and criteria for smoke control systems. You may wonder why the chapter is not simply divided into two sections, one containing criteria and requirements regarding smoke containment systems and the other regarding smoke management systems. This is due to the fact that a large number of the requirements and criteria apply to all systems, regardless of which smoke control method is used. For example, Section 4.4.2.2 specifies that the maximum pressure difference across doors shall not exceed the value stipulated in NFPA 101. This criterion applies to both smoke containment systems such as those that use the stair pressurization approach, and smoke management systems such as those that utilize mechanical exhaust within large-volume spaces.

Section 4.5 contains several requirements regarding system operations. This section requires that all smoke control systems be activated automatically, which is typically accomplished through the use of detection devices such as projected beam smoke detectors or spot-type smoke detectors and control relays, which send a signal to a control panel, which then signals the activation and/or shutdown of a number of devices that make up the complete smoke control system.

Power may be transferred to exhaust or pressurization fans, while at the same time, HVAC units may be shut down and dampers or vents may be opened or closed. Regardless of the components that are used as part of a particular system design, Section 4.5.3 requires that the entire smoke control system, including all of the devices just mentioned, reach full operating conditions before the design smoke conditions are reached (for example, when the design smoke layer depth is achieved).

The calculation of the system start-up time requires consideration of a number of factors in accordance with Section 4.5.3.2, including the time necessary for detection devices to activate (smoke must ascend to the device and reach a specific threshold before the device activates), the time for signals to be transferred, received, and processed, and also the time for mechanical devices to operate (HVAC equipment to shut down, exhaust or pressurization fans to ramp up to full capacity, etc.).

One of the primary reasons this requirement is contained in the standard is to ensure that the designer does not simply overlook these time delays as doing so could have a negative impact on the ability of the system to operate effectively in meeting the design objectives. While these and other requirements apply to all smoke control systems, NFPA 92 also contains some requirements and criteria that apply exclusively to either one type of system or the other. Selected criteria are discussed below.

Smoke containment systems

NFPA 92 Table 4.4.2.1.1 specifies a minimum pressure difference of 0.05 in. of water gage (in. w.g.) for all smoke containment system designs in sprinklered buildings. For nonsprinklered buildings, the minimum pressure difference depends on the ceiling height. Note that NPFA 92 also requires that factors such as wind forces, stack effect, and buoyancy be considered, and where the designer determines a higher minimum pressure difference is necessary, the higher minimum supersedes that contained in Table 4.4.2.1.1.

A numerical maximum pressure difference is not specified in NFPA 92; rather, it is calculated based on the maximum door opening force permitted by NFPA 101, as mentioned earlier. The 2012 edition of NFPA 101 requires that this force not exceed 30 lbf to set the door in motion and 15 lbf to fully open the door. Because the door is much easier to open once it is slightly opened and the pressure difference drops, the criteria used is the 30 lbf. Annex A.4.4.2.2 contains the calculation procedure used to determine the maximum design pressure difference.

Alternatively, the maximum pressure difference can be determined using Table A.4.4.2.2 for standard sized doors. Note that these requirements are not intended to apply to sliding elevator doors. While there is no maximum opening force specified in the standard for elevator doors, it is the intent that the pressure differential should not be sufficient to cause jamming of the door. Research has shown that this is not typically of concern because only a modest force is required to open elevator doors, even when significant pressure differentials are present. Keep in mind other codes may specify design criteria different from or in addition to that contained in NFPA 92, and whenever these codes are applicable, the more restrictive requirements must be used. Table 1 illustrates some of these differences.



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.