NFPA 92 defines design, testing of smoke control systems

03/21/2014


Smoke management systems

Several criteria specified in Chapter 4 are written to apply exclusively to smoke management systems. Example requirements include a minimum smoke layer depth (20% of floor to ceiling height or based on engineering analysis) and a maximum make-up air velocity (200 ft/min near plume or based on engineering analysis). Most smoke management system designs are required by Section 4.5 to be based on tenability and egress analyses; however, these analyses are outside the scope of NFPA 92. In the current revision cycle, consideration has been given to creating a new Annex to address tenability.

Section 4.5.4.1 requires an egress analysis to be conducted when the smoke management system design objectives include maintaining tenability for the time necessary for occupants to exit the building or preventing occupants from being exposed to smoke. This requirement applies to the majority of smoke management system designs, as three of the four possible design objectives contained in Section 4.1.2 fit this description. Section 4.5.4.1 also requires that these systems remain operational for the calculated duration of egress. This requirement coincides with that of section 4.2.3, which together require that equipment must be capable of operating under exposure to the anticipated elevated temperatures for the calculated duration of egress.

Section 4.5.4.2 states that systems designed in accordance with objectives 2 or 3 from Section 4.1.2, which involve maintaining tenability for the duration of egress, are permitted to use design approach 3 or 5 from Section 4.3.2, which involve controlling the rate of smoke layer descent. Section 4.5.4.2 permits flexibility in the design in that occupants are permitted to be exposed to smoke, so long as conditions remain tenable for the duration of egress.

Chapters 5 through 8

Chapter 5 contains calculation procedures for smoke management system designs. Section 5.1 specifies three different methods that can be used for the design of a smoke management system:

  • Algebraic equations (see the remainder of Chapter 5)
  • Scale modeling (not very common)
  • Compartment fire models (includes zone fire models such as consolidated model of fire and smoke transport (CFAST) and computational fluid dynamics (CFD) models such as fire dynamics simulator (FDS)).

NFPA 92 does not contain calculation procedures for smoke containment systems. The SFPE Handbook of Fire Protection Engineering and ASHRAE/ICC/NFPA/SFPE Handbook of Smoke Control Engineering are two commonly used resources for calculation procedures regarding these systems. These handbooks also contain additional information regarding smoke management system design.

Chapter 6 contains requirements regarding equipment and controls that are used as part of, or may affect the operation of, the smoke control system, such as HVAC controllers, firefighters’ smoke control stations, smoke detectors, or dampers. Chapter 7 contains requirements regarding the two documents required to be generated during the design process, the Detailed Design Report and the Operations and Maintenance Manual. Chapter 8 contains smoke control system testing requirements.

Table 1: In this comparison of NFPA 92 and IBC, the required minimum and maximum design pressure difference criteria for stair and elevator hoistway pressurization systems is noted. Note that all quantities are provided in units of in. w.g. Annexes

As noted earlier, the annexes are included for informational purposes only, and are not part of the requirements of NFPA 92.Information in the 13 annexes includes additional calculation procedures and examples, assistance with choosing a design fire and associated heat release rate, and additional information regarding CFD and zone modeling, HVAC air-handling and stairwell pressurization system types (compensation types), and testing.

Upcoming NFPA 92 changes

NFPA 92 currently is being revised as part of the fall 2014 NFPA code cycle. NFPA is still accepting public comments on the first draft report (visit www.nfpa.org/92 for information about the next edition or to submit a notice of intent to make a motion); therefore, nothing has been set in stone. Nevertheless, it is certain that the 2015 edition will feature several editorial revisions and minor revisions to comply with the NFPA Manual of Style and clarify the intent of the standard.

For example, Section 6.4.8.6 is slated to be reworded to clarify that smoke control system operational capability does not have to be verified by weekly tests; rather, it can be verified by other means such as electrical monitoring (supervision) of the control equipment. The committee also has proposed to incorporate references to the 2015 edition of NFPA 4: Standard for Integrated Fire Protection and Life Safety System Testing. In the 2015 edition of NFPA 92, tenability threshold guidance may potentially be brought over from NFPA 130: Standard for Fixed Guideway Transit and Passenger Rail Systems for incorporation into Annex D.

One of the only major changes that has been proposed and is currently under consideration is a substantial revision of the balcony spill equations contained in Chapter 5 (Section 5.5.2). New correlations have been proposed as a result of significant research in the area by Roger Harrison at the University of Canterbury, New Zealand. These new correlations have the potential to yield more accurate calculations and cover a wider range of scenarios than the existing correlations.


William E. Koffel is president of Koffel Associates and is a member of the NFPA Technical Committee on Smoke Management Systems. Nicholas Sealover is a fire protection engineer with Koffel Associates.


<< First < Previous 1 2 3 Next > Last >>

DONALD , NJ, United States, 04/16/14 10:38 AM:

Very good artical, would like to see more articales on the type of wire used in smoke control NEC 760.31(F) requires CI cable used to ensure survivability of critical circuits be listed for that function and states that listed cable may be used to comply with the survivability requirements in the edition NFPA 72
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
2016 Engineering Leaders Under 40; Future vision: Where is manufacturing headed?; Electrical distribution, redefined
Strategic outsourcing delivers efficiency; Sleeve bearing clearance; Causes of water hammer; Improve air quality; Maintenance safety; GAMS preview
World-class maintenance: The three keys to success - Deploy people, process and technology; 2016 Lubrication Guide; Why hydraulic systems get hot
Flexible offshore fire protection; Big Data's impact on operations; Bridging the skills gap; Identifying security risks
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Applying network redundancy; Overcoming loop tuning challenges; PID control and networks
Driving motor efficiency; Preventing arc flash in mission critical facilities; Integrating alternative power and existing electrical systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role that compressed air plays in manufacturing plants.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me