Next generation: Robots that see

04/21/2013

Flash is required!

Figure 2: Video shows Denso robots picking syringes using NI machine vision and NI LabVIEW. Courtesy: National Instruments



Autonomous robotic boom

Nearly every autonomous mobile robot requires sophisticated imaging capabilities, from obstacle avoidance to visual simultaneous localization and mapping. In the next decade, the number of vision systems used by autonomous robots is expected to eclipse the number of systems used by fixed-base, robot arms.

A growing trend is the adoption of 3D vision technology, which can help robots perceive even more about their environment. From its roots in academic research labs, 3D imaging technology has made great strides as a result of advancements to sensors, lighting, and most importantly, embedded processing. Today 3D vision is emerging in a variety of applications, from vision-guided robotic bin picking to high-precision metrology and mobile robotics. The latest generation of processors can handle the immense data sets and sophisticated algorithms required to extract depth information and quickly make decisions.

Robotic stereo vision

Figure 3: Screen capture from video partially shows what Denso robots see when picking syringes using NI machine vision and NI LabVIEW. Courtesy: National InstrumentsMobile robots use depth information to measure the size and distance of obstacles for accurate path planning and obstacle avoidance. Stereo vision systems can provide a rich set of 3D information for navigation applications and perform well even in changing light conditions. Stereo vision technology is the practice of using two or more cameras offset from one another while looking at the same object. By comparing the two images, the disparity and depth information can be calculated, providing accurate 3D information.

While the increased performance of embedded processors has enabled algorithms for uses such as 3D vision with robotics, there still remains a range of applications untapped that require additional performance. For example, in the medical industry, robotic surgery and laser control systems are becoming tightly integrated with image guidance technology. For these types of high-performance vision applications, field programmable gate arrays (FPGAs) manage the image preprocessing or use the image information as feedback in a high-speed control application.

FPGAs are well suited for highly deterministic and parallel image processing algorithms in addition to tightly synchronizing the processing results with a motion or robotic system. This technology is put to practice, for example, during laser eye surgeries where slight movements in the patient’s eyes are detected by the camera and used as feedback to auto-focus the system at a high rate. Additionally, FPGAs can support applications such as surveillance and automotive by performing high-speed feature tracking and particle analysis.

Integrated technologies

Due to rapidly advancing technologies in processing, software, and imaging hardware, cameras are everywhere. Machines and robots in the industrial and consumer industries are becoming increasingly intelligent with the integration of vision technology. The accelerated adoption of vision capabilities into numerous devices also means that many system designers are working with image processing and embedded vision technologies for the first time, which can be a daunting task.

Valuable resources are available to system designers and others simply interested in vision technology. The Embedded Vision Alliance (EVA) is one such resource, which is a partnership of leading technology suppliers with expertise in embedded vision technology. The EVA is available to empower system designers to incorporate embedded vision technology into their designs through a collection of complimentary resources, including technical articles, discussion forums, online seminars, and face-to-face events.

- Carlton Heard is National Instruments vision hardware and software product manager. Edited by Mark T. Hoske, content manager, CFE Media, Control Engineering, mhoske@cfemedia.com.

Online

www.ni.com/vision

www.ni.com/robotics

www.embedded-vision.com (EVA) 


<< First < Previous 1 2 Next > Last >>

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
2017 Lubrication Guide; Software tools; Microgrids and energy strategies; Use robots effectively
Prescriptive maintenance; Hannover Messe 2017 recap; Reduce welding errors
Safety standards and electrical test instruments; Product of the Year winners; Easy and safe electrical design
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Future of oil and gas projects; Reservoir models; The importance of SCADA to oil and gas
Diagnostic functions for system safety; Specifying industrial enclosures; Effective decision support for a crisis
Transformers; Electrical system design; Selecting and sizing transformers; Grounded and ungrounded system design, Paralleling generator systems
Natural gas for tomorrow's fleets; Colleges and universities moving to CHP; Power and steam and frozen foods

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me