New ultrasonic flowmeter family for process applications

Clark Solutions sensor family uses spool-section configuration for permanent mounting.

03/12/2010


Clark Flowmeter

Clark Sonic flow transmitter

 

Clark Solutions has released its new line of CSLFC ultrasonic flow transmitters aimed at permanent mounting applications in process systems. Clark says these transmitters are easy to install, do not impact the flow, pressure, or transit times of fluids, and are unaffected by fluid temperatures or viscosities, making them suitable for measuring flow ranges from 4.5 to 3,000 gpm in 4 to 10 in. pipe.

The company describes this product family as featuring no moving parts, with excellent long-term stability, no pressure drop, and high accuracy at a lower cost than similar instruments. Each sensor is built into a section of schedule 40 epoxy coated carbon steel pipe with Ultem encapsulated ultrasonic transducers and a choice of EPDM, Buna-N, Neoprene, FKM, or other seals. Device transmitters provide a continuous 4-20 mA flow signal. Optional configurations include direction of flow capability, NEMA 4 and 8 pin connector receptacles for simplified installation, and a DP/DS panel meter display.

Clark says its transmitter uses a proprietary mixed signal ASIC (application specific IC), which allows sophisticated timing, control, and transducer drive circuitry to be combined on a single chip. The ASIC uses a special algorithm that is an improvement upon standard single-path measurement techniques. The transmitters use the sing-around method, where each transducer alternates between transmitting and receiving, to measure differences in flight time between upstream and downstream transmissions. The flight time of the sound pulse from the transmitting transducer to the receiving transducer will be shortened if the pulse is launched in the direction of flow, and increased if launched opposite to the direction of flow. By alternating the transmitting and receiving transducers, the difference in these transit times can be used to calculate the velocity of the flow, which, when multiplied by the area of the pipe, results in a measure of volumetric flow rate. The primary advantage of this method is that the velocity of the fluid is being measured independent of the relative speed of sound in that given fluid. The measurement is also unaffected by changes in water temperature, density, and viscosity.

Read a tutorial on ultrasonic flowmeter technology.

-Edited by Peter Welander, process industries editor, peter.welander@cfemedia.com
Control Engineering Process Instrumentation & Sensors Monthly eNewsletter
Register here to select your choice of free eNewsletters .



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Leaders Under 40 program features outstanding young people who are making a difference in manufacturing. View the 2013 Leaders here.
The new control room: It's got all the bells and whistles - and alarms, too; Remote maintenance; Specifying VFDs
2014 forecast issue: To serve and to manufacture - Veterans will bring skill and discipline to the plant floor if we can find a way to get them there.
2013 Top Plant: Lincoln Electric Company, Cleveland, Ohio
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Bring focus to PLC programming: 5 things to avoid in putting your system together; Managing the DCS upgrade; PLM upgrade: a step-by-step approach
Balancing the bagging triangle; PID tuning improves process efficiency; Standardizing control room HMIs
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.