New tests for safer reactors

Operating a nuclear reactor causes progressive microstructural changes in the alloys used in cladding, and that can hurt the materials’ integrity.

04/05/2012


ISS SourceOperating a nuclear reactor causes progressive microstructural changes in the alloys used in cladding, and that can hurt the materials’ integrity. However, present-day methods of evaluating materials can take decades.

That is why Sandia National Laboratories is using its Ion Beam Laboratory (IBL) to study how to rapidly evaluate tougher advanced materials needed to build the next generation of nuclear reactors and extend the lives of current reactors.

Reactor operators need advanced cladding materials, which are the alloys that create the outer layer of nuclear fuel rods to keep them separate from the cooling fluid. Better alloys will be less likely to deteriorate from exposure to everything from coolant fluids to radiation damage.

The IBL, which replaced an earlier facility dating from the 1970s, has been in operation for about a year and is doing in situ ion irradiation experiments, potentially shaving years off testing. The ion beams use various refractory elements to simulate different types of damage and thus predict the lifetimes of advanced reactor claddings.

Researchers, trying to understand the changes as a function of radiation dose, inserted a beamline from the tandem accelerator, the IBL’s largest, into a transmission electron microscope (TEM). This allowed them to do in situ ion irradiation experiments at the nanoscale and record results rapidly and in real time. Sandia’s lab is one of two facilities in the U.S. and one of only about 10 in the world that can do this, said Khalid Hattar, a materials scientist at Sandia.

“The idea is to come up with new ways to make different alloy compositions and different materials for next-generation reactors and to understand the materials used in the current-generation reactors,” he said. “Then we can find ways of doing a combination of TEM characterization as well as small-scale mechanical property testing in this rapid testing scenario to screen these materials and see which ones are the most suitable.”

Better understanding of cladding materials could help improve reactor efficiency.

Hattar and his team are using the IBL’s capabilities to try to gain a fundamental understanding of how the materials evolve in extreme environments at the nanoscale. They hope that understanding can then relate to events on the macroscale.

Along those lines, take something familiar like rust on a little red wagon.

“If you look at rust, it’s nonuniform,” Hattar said. “So the location where that first rust starts to occur must be related to some heterogeneous aspect of the microstructure. If we can really understand on the nanoscale what causes it, that initiating factor, then we can prevent the initiation, and without the initiation, you’ll never have that rust formation.”

The team developed a system for testing cladding materials that Hattar believes can work in experiments under extreme conditions to simulate real-life environments. Researchers can work with temperatures up to 2,192 F and pressure up to one atmosphere as well as ion irradiation to gain basic understanding of radiation damage.

A recently completed Laboratory Directed Research and Development (LDRD) program worked with a variety of samples, everything from high-purity, single-crystal copper to materials used in today’s reactors. The team found under the right conditions, a combinatorial approach can work with new alloy compositions produced in-house, Hattar said.

The LDRD project demonstrated a fundamental physics simulation of what’s happening to the material. In the next step, Hattar suggested Idaho National Laboratory expose selected materials to neutrons and then try them out in a real reactor. Since the IBL can run experiments in as little as a day, researchers aim to pinpoint the best material so the Idaho lab, whose tests take much longer, won’t waste time testing poorer materials, he said.

In one experiment, the team examined the composition of and effects of radiation on an alloy considered for the next generation of reactors, seeking the best composition for different radiation exposures.

“Really understanding how the microstructure evolves lets us know a lot about how the material will perform,” Hattar said. “So if we can rapidly determine how the microstructure evolves and understand the mechanisms that it evolves by, we could gain a lot of insight into what happens in the material.”



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Hannover Messe 2016: Taking hold of the future - Partner Country status spotlights U.S. manufacturing; Honoring manufacturing excellence: The 2015 Product of the Year Winners
Inside IIoT: How technology, strategy can improve your operation; Dry media or web scrubber?; Six steps to design a PM program
World-class manufacturing: A recipe for success: Finding the right mix for a salad dressing line; 2015 Salary Survey: Manufacturing slump dims enthusiasm
Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Digital oilfields: Integrated HMI/SCADA systems enable smarter data acquisition; Real-world impact of simulation; Electric actuator technology prospers in production fields
Special report: U.S. natural gas; LNG transport technologies evolve to meet market demand; Understanding new methane regulations; Predictive maintenance for gas pipeline compressors
Warehouse winter comfort: The HTHV solution; Cooling with natural gas; Plastics industry booming
Managing automation upgrades, retrofits; Making technical, business sense; Ensuring network cyber security
Designing generator systems; Using online commissioning tools; Selective coordination best practices

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role that compressed air plays in manufacturing plants.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
click me