New, efficient industrial gas turbines coming: Siemens, GE, full report

At the heart of the latest combined-cycle gas turbine plants from GE and Siemens lies innovation, not just gigantic size. A key enabler of increased thermal efficiency is turbine design with higher temperature combustion and exhaust gases. Link to photo of Siemens unit.

08/08/2008


Technology advances in industry often proceed at a slow, conservative pace. This applies more so to physically very large and complex systems, like the new-generation stationary gas turbines coming online. These weigh up to 440 metric tons—that’s nearly a million pounds of hardware! But at the heart of the latest combined-cycle gas turbine (CCGT) plants lies innovation, not just gigantic size.

For example, the newest gas turbines apply single-crystal materials, super alloys, special thermal coatings, and—in one design—closed-loop steam cooling to reach 60% thermal efficiency and beyond. Moreover, the turbine systems are said to produce fewer emissions than conventional CCGT plants. Even substantially higher efficiency is possible in a cogeneration plant, where excess generated heat is put to use for process or domestic heating, in addition electric power generation.

A key enabler of thermal efficiency is turbine design with higher temperature combustion and exhaust gases. However, this requires special cooling at the hottest section of the turbine. GE Energy uses steam cooling in its H system turbine that operates as hot as 1,430 °C (2,606 °F). Siemens Power Generation has opted for all air-cooling, because this method is considered simpler than steam cooling and offers more design flexibility by avoiding dependence on the steam cycle, according to Siemens. ( Photo, Siemens tour: Largest gas turbine: 2,838 sensors, 90 GB data per hour of testing .)

Use of advanced materials also enables higher temperature operation. GE’s H turbine uses single-crystal materials in first-stage blades and vanes that endure extreme temperatures over a long service life. Similarly, row 1 turbine blades of Siemens’ SGT5-8000H machine are made of specialized high-temperature alloy material to combat long-term effects of high-temperature and stress (creep deformation).

Actual performance

GE Energy and Siemens have a history of gas turbine expertise. Earlier smaller turbines from each company have recorded thermal efficiencies in the 57-58% range in combined-cycle plants, so the 60% design goal is realistic.

Hard operating data is still scarce, however. Although GE turbines at Baglan Bay power station in South Wales (U.K.) has generated power for some time, it served as a gas turbine technology validation site. Still, the plant is said to have reached “just under 60%” efficiency.” Additional CCGT plants and further operating experience will validate efficiency levels.

Actual thermal efficiency depends on site ambient conditions and balance of plant (BOP) equipment configurations, according to GE. “Specific site conditions and BOP configuration at Baglan Bay were not optimized to achieve 60% overall plant efficiency,” as reported in GE Energy in March 2008. “Data gathered at Baglan Bay support the technology’s capability and GE has offered the 9H System with a 60% efficiency guarantee where site conditions are appropriate.”

Extensive testing

Extensive, predefined testing is necessary to ensure that turbine performance meets design specs, along with reliable, long-term operation associated with power systems. With several different technology levels being validated, the long development cycle needed for these turbines—from first firing through commercialization—becomes evident.

Proof of the gas turbine comes after its incorporation into the combined-cycle system, notes Phillip Ratliff, director of next-generation gas turbines at Siemens. This is scheduled in phase 2 of development for the Irsching CCGT plant in Southern Germany (see Advancing Technology column, Hunt for more than 60% thermal efficiency, Control Engineering August 2008 ). “The idea was to build a gas turbine for the most efficient and operationally flexible combined-cycle power plant,” says Ratliff. “However, the gas turbine is a major contributor to the eventual plant’s success; in fact it’s the driver for the high-temperature steam cycle.”

Ratliff is confident about the technological success of Siemens’ CCGT system, but has some concern about economic issues, such as cost of fuel and high-temperature materials used in the plant. In fact, fuel cost makes up the biggest expense to run a gas-fired power plant.

And that’s the main reason for developing CCGT power plants of the highest efficiency.

Frank J. Bartos, P.E ., Control Engineering consulting editor
News Desk
Register here to select your choice of eNewsletters free .





No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Leaders Under 40 program features outstanding young people who are making a difference in manufacturing. View the 2013 Leaders here.
The new control room: It's got all the bells and whistles - and alarms, too; Remote maintenance; Specifying VFDs
2014 forecast issue: To serve and to manufacture - Veterans will bring skill and discipline to the plant floor if we can find a way to get them there.
2013 Top Plant: Lincoln Electric Company, Cleveland, Ohio
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Bring focus to PLC programming: 5 things to avoid in putting your system together; Managing the DCS upgrade; PLM upgrade: a step-by-step approach
Balancing the bagging triangle; PID tuning improves process efficiency; Standardizing control room HMIs
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.