New Construction Bronze: Bioengineering for the future

12/01/2008


View the full story, including all images and figures, in our monthly digital edition.

It's no easy task to plan a medical research campus that responds to today's needs while preparing for the unforeseen tasks of the future. That's exactly what University of Colorado Denver wanted for its Anschutz Medical Campus Research 2 building.

Located in the Denver suburb of Aurora, Colo., the campus was part of a $3 billion master plan that would create a series of research, clinical, educational, and hospital centers on the decommissioned Fitzsimons Army Post (the same place where President Eisenhower spent seven weeks in the hospital recovering from a heart attack in 1955).

The action plan

Raleigh, N.C.-based KlingStubbins was brought into the project, along with Fentress Architects, ME Engineers, and a series of additional consultants for the first two research laboratory buildings. With the first Research Building (RC-1) completed in June 2004, the team was “re-selected” to provide design on the $206 million, 11-story, 506,000-sq-ft second Research Building (RC-2). The building is home to School of Medicine research sciences including: cardiology, toxicology, gastroenterology, geriatrics, neurology, pediatrics, and infectious diseases.

Inside is a 46,000-sq-ft vivarium space for research lab animals and a biosafety level three environment. (Think potentially lethal diseases like anthrax, West Nile virus, and SARS.) Due to the sensitive nature of the research, the system designs focused on reliable, redundant systems and sources that serve to protect the research, the research animals, the researchers, and the external environment.

“Biomedical research isn't often done at such capacity,” said KlingStubbins engineering design principal Jeff Heiken. “Usually it is 40,000 sq ft dedicated to a specific science in a single building, not a high-rise of this size.”

Power for the entire campus operates on a 15 kV redundant loop, with RC-2 electrical service switch gears on two medium-voltage 15 kV circuit breakers that automatically switch over to emergency generators if necessary while UPS systems cover the emergency lighting needs throughout the lab.

“That way, if a researcher is in the middle of something and all the power goes out, they don't get stuck in the dark until the generator kicks in,” Heiken said.

The school wanted architectural flexibility, so a room could be customized according to a researcher's needs. The designs incorporated modular, flexible, and redundant lab designs with varying options for procedural spaces.

With this in mind, the design plan focused on a set density of chemical fume hoods that could easily expand or contract without significant infrastructural alterations as research needs or techniques evolve. High density of data and power access was added throughout all research areas, with more than 10,000 power receptacles throughout the building.

“With these designs, if a new researcher joins the university and wants to do something different, you don't have to rip out the system and go through various ductwork changes to reconfigure the room,” Heiken said. “It's already built into the system.”

High-tech ventilation

Eight custom variable volume air handlers at 80,000 cfm provide conditioning and ventilation for the laboratory, support, and office spaces. Because of Denver's arid climate, all air handlers were fitted with evaporative cooling sections, which function to reduce the overall mechanical refrigeration needs. The primary cooling for the building is a centralized campus loop, which features high-efficiency chiller units capable of diversifying the loading profiles on a campus-wide level. A glycol pump-around heat recovery system has coils in the main exhaust air stream on the roof, which captures thermal energy for preheating or precooling at associated coils in the main air handlers to reduce primary cooling and heating peak loads.

Within the building, three very large vertical shafts are sized for air distribution. The exhaust is routed to the seven roof-mounted utility set fans that are connected to a series of high-velocity, high-dispersion stacks. The conditioned supply air from the second level has louvered intakes strategically positioned to prevent re-entrainment of exhausted contaminants. The supply ducting connects horizontally on the mechanical room level prior to rising vertically to the research levels with more than 1,500 laboratory supply and exhaust air control devices.

Lighting control elements were added with energy-saving occupancy sensors, and photocell-controlled exterior security and safety lighting. Preset dimming stations in the lecture theater and gathering spaces, and perimeter offices equipped with automatic dual level switching with dual ballasts controlled via photosensors also conserve energy.

“It's a state-of-the-art building that can adapt to just about anything researchers might need in the future,” said Heiken.





No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.