Network architecture of the future: It’s now

Plan your process networks long before you need them.


We have all seen the situation: a new piece of equipment has to be connected to some network right now, because the facility manager has labeled it critical and it must appear on the monthly reports. So it gets tied into the nearest network, or perhaps an odd gateway is installed to connect it to an existing system, or maybe we have to install an extra communications module to let it talk over some other protocol. Next month, we go through a similar process when a new interlock between unconnected equipment needs to be installed, so we rig something up to get from A to B. Follow this process for a few years and the process control network diagrams begin to look like spaghetti.

It doesn’t have to be that way. You can future-proof your networks by building a detailed network plan and then only adding systems that fit the plan into the network.

What kind of network?

Every facility has a unique set of needs for its process control network. For some, data loading is very light, but security is paramount. For others, security is less important, but it must handle huge amounts of data. Do you have a safety network running alongside the process network and are there any common failure points? The balance point between these various needs will likely differ between parts of the facility.

The ISA95 network diagram. Courtesy: ISA

The ISA 95 framework is a commonly referenced model that defines multiple levels of process control. As you work through the exercise of defining network needs, consider what level that network falls into. Most process control networks are at Level 1 or Level 2 and most business networks cover Levels 3, 4, and 5.

How many networks?

As you identify the requirements for each of your various networks, often you will find some that conflict. You may even have some that are diametrically opposed. One solution is to choose a middle way that tries to serve all, but does it poorly. The better solution is to break your data paths into two or more networks. One network with low bandwidth and ultra-high availability might be perfect for the safety interlock system. A different network with very high throughput but occasional packet loss might be the one to use for HMI process monitoring. Ultimately, the most thorough approach is a three-layer network.

Layer A is the I/O network, used by the PLC or DCS to communicate with its field devices. This layer is at Level 1 in the ISA95 model. Frequently, Layer A is broken into many small networks serving different areas or zones. There might be an RS485 serial network on one piece of equipment, remote I/O over Ethernet in an adjacent room, and Profibus DP in the next building.

Layer B is the interconnect network, used for communication between PLCs, DCS nodes, or other intelligent control devices. This layer may be at Level 1 or Level 2 in the ISA95 model, depending on exactly how it is used. This layer may also be segmented, but less so than at Layer A, due to the need for different supervisory equipment to share information with each other.

Layer C is used by the HMI or SCADA system to collect process data and present it to the user. This layer is generally at ISA95 Level2.

Additional layers that correspond to Levels 3, 4, and 5 of the ISA95 model are generally the business LAN and WAN and are outside the control of process engineers.

Develop the plan

Consider the most complex or data-intensive project you have implemented in the past five years. With the rapid pace of advancement in automation, that project is likely to become your baseline standard project in the not-too-distant future. Plan for your worst expectations five years down the road, and then triple it.

• Lay out all the networks at Layers A, B, and C in all areas of the facility, even if you currently have no equipment that needs a particular layer in a particular area.
• Identify addresses or address ranges, preferred hardware, cable specifications, and all the other small details that will be needed when the time comes to install something new in that area.
• Specify lists of acceptable control hardware that works with the planned networks.

Once the network plan is complete, in all its detail, review it periodically. The overall architecture should not change often, but might need minor adjustments. The hardware lists should be updated to address newly available functionality, while also paying attention to backwards compatibility. Interconnect requirements may change as the product process is reconfigured.

Plan the work

Once you have a plan for future expansion and utilization of the process control network, stick with it. Document the plan as an official policy or institutional guideline rather than remaining as a department preference. Spread the information as widely as possible, so that all hands can contribute to maintaining its integrity.

Every time there is a new project to implement, reference it against the network plans and associated standards documents. You will find that having all the details pre-planned dramatically simplifies the networking portions of the project development process.

Work the plan

When implementing a project, do not make modifications to the plan for the sake of expediency. Deviating from the standards ”just this once” can quickly turn into a standard which is generally ignored.

Include the network standards in project scoping documents so that vendors are obligated to follow them. If purchasing approves a new piece of equipment that is incompatible with the plan, does engineering have the power to refuse it when it shows up on the receiving dock? More importantly, how can you work with purchasing to prevent the incompatible purchase in the first place?

Plan comprehensively, build incrementally

As we continue to move farther into the data-driven future of automation, we can no longer deal with our process networks as afterthoughts. They have become as critical to our success as the production equipment they are attached to. Few facilities have the luxury or the funding to build the perfect network today, but almost all have the ability to plan it today. By developing a detailed plan, and building it incrementally over time, you have to power to make tomorrow’s network a success with your efforts today.

This post was written by Robert Henderson. Robert is a principal engineer at MAVERICK Technologies, a leading automation solutions provider offering industrial automation, strategic manufacturing, and enterprise integration services for the process industries. MAVERICK delivers expertise and consulting in a wide variety of areas including industrial automation controls, distributed control systems, manufacturing execution systems, operational strategy, business process optimization and more.

Anonymous , 10/01/13 11:09 PM:

Personally I think the digital networking shall start from the very "first meter": at the sensors and actuators at level 1 of the Purdue reference model using a fieldbus or wireless sensor network, doing away with 4-20 mA and on/off signals
Anonymous , 10/03/13 01:39 AM:

I "grew up" with the technologies on both sides, I/T-Enterprise and Process Automation AKA Manufacturing & Engineering I/T. I was an Internet Service Provider for 6 years during which time COTS became pervasive and DECnet and other local networks were replaced by TCP/IP in plant cyber design. I agree that appreciation has to come from all involved and the MOC which is common in Plant Operations has to be appreciated on the Enterprise side for its full critical necessity.

Many things an enterprise person might think are just fine such as scanning ports on device, often for discovery or in troubleshooting.
Some old devices in plants, however, may exist that were designed when 10Mb 1/2 duplex was all there was and 100Mb, much less Gb, was a pipe dream.

Further, common ports and protocols were not in existence when some of these devices were implemented and accessing these new ports crash old technology. Such scans are NOT worth the risk on a production plant. Such devices of course should be upgraded or extremely well protected as part of technology lifetime management but some old devices always seem to hang in there in some places.

Some corporations have seen the need for I/T savvy representatives for plant networks and devices within their Control System Support or Security function.

A company I worked for developed processes and roles to see that all stakeholders were engaged in any I/T change process that might affect a plant network. New situations occurred for some time but any such processes inherently need diligence and continuous review and improvement.

Enterprise I/T folks and Manufacturung I/T people must develop good rapport and respect for each other. I suppose a natural order of things has driven development of some very good 3rd party safety and security vendors who can evaluate existing or assist in developing and evolving processes and policies. I believe operations of all sizes could benefit from such fresh perspective.
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
IIoT grows up; Six ways to lower IIoT costs; Six mobile safety strategies; 2017 Salary Survey
2016 Top Plant; 2016 Best Practices on manufacturing progress, efficiency, safety
2016 Product of the Year; Diagnose bearing failures; Asset performance management; Testing dust collector performance measures
Future of oil and gas projects; Reservoir models; The importance of SCADA to oil and gas
Big Data and bigger solutions; Tablet technologies; SCADA developments
SCADA at the junction, Managing risk through maintenance, Moving at the speed of data
What controller fits your application; Permanent magnet motors; Chemical manufacturer tames alarm management; Taking steps in a new direction
Tying a microgrid to the smart grid; Paralleling generator systems; Previewing NEC 2017 changes
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Motion control advances and solutions can help with machine control, automated control on assembly lines, integration of robotics and automation, and machine safety.
This article collection contains several articles on the vital role of plant safety and offers advice on best practices.
This article collection contains several articles on preventing compressed air leaks and centrifugal air compressor basics and best practices for the "fifth utility" in manufacturing plants.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
click me