Motor control terms, braking

Are there differences in servo drives and servo amps? What are the different kinds of motor braking strategies? 'Brake' now for motor learning.

02/01/2010


Yaskawa Electric America calls its Sigma-5 EtherCAT (SGDV) a servo amplifier. The servo drive has 1,600 Hz bandwidth, real-time autotuning, and vibration suppression.This month’s Back to Basics column, based on the Ask Control Engineering blog, looks at motor control terminology and motor braking technologies. 

Motor control terms

Amplifier (amp for short), inverter, adjustable-speed drive (ASD), and variable-frequency drive (VFD) are all terms generally used to describe the motor controller or the motion controller that adjusts motor speed, among other functions.

Like many terms, definitions tend to overlap and people don’t always make appropriate distinctions. Control Engineering consulting editor and electric motor drive expert Frank Bartos explains:

  • The terms “servo drive” and “servo amp” are commonly used interchangeably. However, I think drive is preferable, as it includes a number of elements that make up an electric motor drive. Amp is a loose term for a drive since the amplifier is just one element of the whole.

  • Servo drive means the motor’s power section, controls, and electronics, not the servo motor.

  • A VFD (variable frequency drive) is the motor control for an alternating current (ac) drive, also called an ac adjustable-speed drive.

  • Inverter also is often used to refer to the whole VFD, although it is just one section of the drive along with the rectifier and dc link.

Motor braking technologies

Motor braking is very useful as a way to apply resistance to a load without components wear (such as brake shoes or pads). Traditionally, the approach was to wire the motor driving the load in such a way that it could be turned into a generator when braking was necessary. This would apply resistance to the rotation and slow the action.

Dynamic braking takes the current generated by a motor in braking mode and sends it to a resistor bank. The amount of resistance determines the braking force so it can be carefully controlled from very light to 150% of normal torque. Rotational energy is dissipated as heat in the resistors. This approach has been very popular in Diesel-electric locomotives, and dates back to the earliest models. While it works well, dynamic braking does require adding the resistor bank and a way to carry off the heat, so this is extra equipment.

Regenerative braking is similar and sends the electricity back onto the local grid or into batteries. A Toyota Prius uses this approach and can charge the battery when driving down a hill.

Growing use of VFDs has created other alternatives that can be accomplished via software without more equipment. One method is dc injection braking , but this is usually only used to hold a motor that’s already stopped.

High-slip braking helps stop rotation by turning down the stator frequency well below rotational speed. The negative slip slows the motor. The motor absorbs most of the energy generated as heat rather than sending it back into the drive as regenerative breaking would do. It also doesn’t require beefing up the drive so it can handle the overload. High-slip braking cannot provide fine control like dynamic braking. Using it too often could burn up the motor, so it’s best used on an intermittent basis. Since it only requires software, it can be a very economical alternative.



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.