Motion control: To network or not to network?


Machine controller cards

Figure 5: Machine controller cards combine a general purpose microprocessor with a dedicated motion controller. Increasingly, the motion amplifiers are located right on the card. Courtesy: Performance Motion DevicesThe major alternative to distributed drives is a machine controller card, also called a motion control card. The distinction is that a motion control card connects via a backplane bus to a separate motherboard or processer card, but here we will refer to stand-alone single-card controllers and backplane motion cards as machine controller cards.

In the machine controller approach a microprocessor holds the machine's application code, and a motion controller IC, also called a motion processor, generates profiles, does servo loop closure, and manages the time-critical elements of axis control. Note that it is possible, particularly for simple control applications, for the machine application microprocessor and the motion processor to be one and the same.

The advantages of the machine controller card approach are many-fold including easier serviceability since repair of the entire controller card is a simple swap-out. Another advantage is reduced wiring since the amplifiers are located on the card. Finally, the physical form factor of the card along with the connector interfaces can be tailored to suit the application.

There are two major variations of machine controller cards: off-the-shelf and custom built. Off-the-shelf cards, particularly bus-connected motion cards, have been around for a long time and are available from several different vendors.

Custom built cards, while more work on the design side, are also a strong choice. The most important trend here is integration of the amplifier, either IC or module-based, directly onto the card.

Another trend is use of off-the-shelf IC-based motion controllers. These units provide profile generation, servo loop closure, commutation, and a myriad of time-critical functions such as automatic safety responses, programmable breakpoints, and other types of automatic motion axis management.

How to choose a network

Figure 6: Today's solderable amplifier modules can provide output of a kilowatt or more to drive dc brush, brushless dc, and step motors. Courtesy: Performance Motion DevicesHere’s how to select a motion control network. Certain factors may make one architectural approach more suited than another.

When considering a distributed motion network, try to anticipate the kinds of signaling that will be required in your application. Does the behavior of the motion depend on the status of signals located on another part of the machine? Will you place sensors, and other non-motion controlled actuators, such as relays, on the network bus? How quickly does the motion have to shut down if an error occurs?

Another important consideration regarding how, and how much, you can use a network-based approach is the mechanical organization of the connected machine. This issue addresses questions such as, “How will the machine be serviced if electronics are physically distributed throughout the machine?” Although the traditional card rack that the technician services may be a mess of wires, there is something to be said for keeping everything under one roof. Serviceability and lifetime ownership cost strongly affect control system design choices.

Remember also that distributing the control by placing amplifiers near the motors may not always be feasible for weight, heat, or other environmental reasons. The traditional control rack cabinet can be air conditioned and insulated from the machine operating environment. This is often not possible if the controls are distributed.

When is one control approach used over another? There is no easy or simple answer, and sometimes two architectures can be used equally well for a given application.

In broad terms, the more cost sensitive the application, the more likely it is that the person designing the motion application will design a card and, depending on power level, integrate on-board amplifiers. When designing a card, it is possible to choose exactly the connectors needed and set the form factor of the card for that particular motion application.

Figure 7: Off-the-shelf motion control integrated circuits (ICs), also called motion processors, provide profile generation, servo loop closure, and various other dedicated motion functions. Courtesy: Performance Motion DevicesHighly synchronized applications such as machine tools will gravitate toward multi-axis motion cards or a tightly coupled distributed drive approach. These drives allow a lot of flexibility in motor type and power range. Don't forget that a motion control card will be needed for overall path generation, or you will use a PC running dedicated G-code software.

A large middle ground of applications, such as medical automation, semiconductor automation, scientific instrumentation, and low-power general automation, can be served by several approaches including off-the-shelf machine controller cards, custom-built machine controller cards, or loosely coupled distributed drives.

- Chuck Lewin is founder and vice president of engineering, Performance Motion Devices. Edited by Mark T. Hoske, content manager, CFE Media, Control Engineering,


At bottom of this article, look for related articles on motion control.

Key concepts

  • Understanding motion architectures can help with machine design and network selection and design.
  • Two motion control devices include distributed drives and machine controller cards.

<< First < Previous 1 2 Next > Last >>

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Sister act: Building on their father's legacy, a new generation moves Bales Metal Surface Solutions forward; Meet the 2015 Engineering Leaders Under 40
2015 Mid-Year Report: Manufacturing's newest tool: In a digital age, digits will play a key role in the plant of the future; Ethernet certification; Mitigate harmonics; World class maintenance
2015 Lubrication Guide: Green and gold in lubrication: Environmentally friendly fluids and sealing systems offer a new perspective
Drilling for Big Data: Managing the flow of information; Big data drilldown series: Challenge and opportunity; OT to IT: Creating a circle of improvement; Industry loses best workers, again
Pipeline vulnerabilities? Securing hydrocarbon transit; Predictive analytics hit the mainstream; Dirty pipelines decrease flow, production—pig your line; Ensuring pipeline physical and cyber security
Cyber security attack: The threat is real; Hacking O&G control systems: Understanding the cyber risk; The active cyber defense cycle
Designing positive-energy buildings; Ensuring power quality; Complying with NFPA 110; Minimizing arc flash hazards
Building high availability into industrial computers; Of key metrics and myth busting; The truth about five common VFD myths
New industrial buildings: Greener, cleaner, leaner; New building designs for industry; Take a new look at absorption cooling; Offshored jobs start to come back

Annual Salary Survey

After almost a decade of uncertainty, the confidence of plant floor managers is soaring. Even with a number of challenges and while implementing new technologies, there is a renewed sense of optimism among plant managers about their business and their future.

The respondents to the 2014 Plant Engineering Salary Survey come from throughout the U.S. and serve a variety of industries, but they are uniform in their optimism about manufacturing. This year’s survey found 79% consider manufacturing a secure career. That’s up from 75% in 2013 and significantly higher than the 63% figure when Plant Engineering first started asking that question a decade ago.

Read more: 2014 Salary Survey: Confidence rises amid the challenges

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.